Deccan Education Society's

Kirti M. Doongursee College of Arts, Science and Commerce (AUTONOMOUS)

Affiliated to

UNIVERSITY OF MUMBAI

Autonomy based

Syllabus for

Program: Bachelor of Science

Course: T.Y.B.SC. Subject: BOTANY

Choice Based Credit System (CBCS)
with effect from
Academic Year 2024-2025

PROGRAM OUTCOMES

РО	Description
A studer	nt completing Bachelor's Degree in Science Program will be able to
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of a graduate Programme. Execute strong theoretical and practical understanding generated from the specific graduate Programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.
PO3	Social competence: Display the understanding, behavioral skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence: Performing dependently and collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centered national development and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

Deccan Education Society's Kirti M. Doongursee College (Autonomous) Proposed Curriculum as per Autonomy.

Year of implementation- 2024-25

Name	of the	Department:	BOTANY
Hame	OI CIIC	Department.	

Semester	Course Code	Course Title	Credit
V	KUSBOT24501	PLANT DIVERSITY III	2.5
	KUSBOT24502	PLANT DIVERSITY IV	2.5
	KUSBOT24503	FORM AND FUNCTION III	2.5
	KUSBOT24504	CURRENT TRENDS IN PLANT SCIENCES II	2.5
	KUSBOT24P5	Practicals based on Two Courses in Theory (501 & 502) – 6 Units	3
	KUSBOT24P6	Practicals based on Two Courses in Theory (503 &504) – 6 Units	3
			16
VI	KUSBOT24601	PLANT DIVERSITY III	2.5
	KUSBOT24602	PLANT DIVERSITY IV	2.5
	KUSBOT24603	FORM AND FUNCTION III	2.5
		CURRENT TRENDS IN PLANT SCIENCES II	2.5
	KUSBOT24P7	Practicals based on Two Courses in theory (601 & 602) – 6 Units	3
	KUSBOT24P8	Practicals based on Two Courses in theory (603 & 604) – 6 Units	3
			16

NB: The syllabus is likely to change, subject to the revision that might be recommended by University of Mumbai.

Course Code	SEM - V: BOTANY-	Credits	Lectures/Week
KUSBOT24501	PLANT DIVERSITY – III	2.5	4

Course Outcomes:

- To gain knowledge about microbial diversity and techniques for culturing and visualization.
- To understand the salient features of three major groups of algae, their life cycle patterns with a suitable example; to be able to identify them.
- To learn the general characteristics and classification of two major groups of fungi along with life cycles of each group; to be able to identify them.
- To understand the scope and importance of Plant Pathology and apply the concepts of various control measures of commonly widespread plant diseases.

Unit	Topics			
Onic		Lectures		
	MICROBIOLOGY			
I	 Types of Microbes: Viruses, Bacteria, Algae, Fungi, Protozoa, Mycoplasma and Actinomycetes. Culturing: Sterilization, media, staining, colony characters. Pure cultures 	15		
П	ALGAE (G.M. SMITH CLASSIFICATION SYSTEM TO BE FOLLOWED) • Division Rhodophyta: Classification and General Characters: Distribution, Cell structure, pigments, reserve food, range of thallus, reproduction: asexual and sexual, Alternation of Generations, Economic Importance. • Structure, life cycle and systematic position of Polysiphonia,	15		

	Datua ah aspawayan	
	Batrachospermum.	
	Classification and General Characters of Xanthophyta: Distribution,	
	Cell structure, pigments, reserve food, range of thallus, Reproduction:	
	asexual and sexual, Alternation of Generations, Economic Importance.	
	• Structure, life cycle and systematic position of <i>Vaucheria</i> .	
	Classification and General Characters of Bacillariophyta: Distribution,	
	Cell structure, pigments, reserve food, range of thallus, Reproduction:	
	asexual and sexual, Alternation of Generations, Economic Importance.	
	• Structure, life cycle and systematic position of <i>Pinnularia</i> .	
	FUNGI (G.M. SMITH CLASSIFICATION SYSTEM TO BE	
	FOLLOWED)	
III	Basidiomycetes: Classification and General characters	
	➤ Life cycle of Agaricus	15
	➤ Life cycle of Puccinia	
	Deuteromycetae: Classification and General Characters	
	Life cycle of Alternaria	
	PLANT PATHOLOGY	
IV	• Study of plant diseases: Causative organism, symptoms, predisposing	
	factors, disease cycle and control measures of the following.	
	White Rust –Albugo candida	
	Tikka disease of ground nut: Cercospora	15
	Damping off disease: Pythium	15
	 Citrus canker –Xanthomonas axonopodis pv. citri 	
	➤ Leaf curl – leaf curl virus in Papaya.	
	Study of Physical, chemical and biological control methods of plant	
	diseases.	

- 1. Industrial Microbiology by Cassida, New Age International, New Delhi
- 2. Industrial Microbiology Mac Millan Publications, New Delhi
- 3. College Botany Vol I and II by Gangulee Das and Dutta Central Education enterprises.
- 4. Cryptogamic Botany Vol I and II by G M Smith, Mcg raw Hill
- 5. A text Book of Palynology by K Bhattacharya, New Central Book Agency Pvt. Ltd., London
- 6. Book for Degree Students- Algae by B R Vasistha, A.K.Sinha, S Chand Publication.
- 7. Book for Degree Students- Bryophytes by B R Vasistha, A.K.Sinha, S Chand Publication.
- 8. Text book of Algae Bilgrami K. S CBS Publishers
- 9. Textbook Of Microbiology 5th Edition by Dubey R C & Maheshwari D. K. S Chand & Company
- 10. Textbook Of Microbiology 5Th Edition May 2016 By Arora And Arora by D R Arora and Brij Bala Arora, CBS PUBLICATION.

Course Code	SEM – V: BOTANY-	Credits	Lectures/Week
KUSBOT24502	PLANT DIVERSITY – IV	2.5	4

Course Outcomes:

- To acquire knowledge of different fossil forms and understand their role in evolution.describe plant cell structure and Genetic terminology.
- To provide plant description, describe the morphological and reproductive structures of seven families and also identify and classify according to Bentham and Hooker's system.
- To gain proficiency in the use of keys and identification manuals for identifying any unknown plants to species level.
- To relate anomalies in internal stem structure with function and appreciate the salient features of the root stem transition zone.
- To get exposure to pollen study and learn to apply it in various fields.

female fructification. • Pentoxylon- All form genera. • Contribution of Birbal Sahni, Birbal Sahni Institute of Paleobotany, Lucknow. ANGIOSPERMS I • Morphology of flower − All Parts of Flower. • Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits. • Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) ▶ Capparidaceae	Unit	Topics	No of Lectures
and female fructification. • Lyginopteris— All form genera root, stem, leaf, male and female fructification. • Pentoxylon— All form genera. • Contribution of Birbal Sahni, Birbal Sahni Institute of Paleobotany, Lucknow. ANGIOSPERMS I • Morphology of flower − All Parts of Flower. • Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits. • Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) ▶ Capparidaceae		PALEOBOTANY	
 Lyginopieris— All form genera root, stem, lear, male and female fructification. Pentoxylon— All form genera. Contribution of Birbal Sahni, Birbal Sahni Institute of Paleobotany, Lucknow. ANGIOSPERMS I Morphology of flower – All Parts of Flower. Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits. Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) Capparidaceae 			
 Contribution of Birbal Sahni, Birbal Sahni Institute of Paleobotany, Lucknow. ANGIOSPERMS I Morphology of flower – All Parts of Flower. Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits. Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) Capparidaceae 	I		15
 ANGIOSPERMS I Morphology of flower – All Parts of Flower. Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits. Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) Capparidaceae 		Contribution of Birbal Sahni, Birbal Sahni Institute of	
 ➤ Umbelliferae ➤ Cucurbitaceae ➤ Rubiaceae ➤ Solanaceae 	II	 Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits. Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) Capparidaceae Umbelliferae Cucurbitaceae Rubiaceae 	15

	ANATOMY I	
	• Anomalous secondary growth in the Stems of Bignonia,	
111	Salvadora, Achyranthes, Dracaena. Storage roots of Beet, Radish	1=
III	• Root stem transition	15
	• Types of Stomata— Anomocytic, Anisocytic, Diacytic, Paracytic and	
	Graminaceous	
	PALYNOLOGY	
IV	• Pollen Morphology	
	• Pollen viability—storage	15
	• Germination and growth of pollen	15
	• Application of Palynology in honey industry, coal and oil exploration,	
	Aerobiology and pollen allergies, forensic science	

- 1. An introduction to Embryology of Angiosperms by P Maheshwari, McGraw Hill Book Co.
- 2. Plant Systematics by Gurcharan Singh, Oxford and IBH Publ.
- 3. Taxonomy of Vascular Plants by Lawrence George, H M, Oxford and IBH Publ.
- 4. A text Book of Palynology by K Bhattacharya, New Central Book Agency Pvt. Ltd., London
- 5. Pollen Morphology and Plant Taxonomy by G. Erdtman, Hafner Publ. Co., N.Y.
- 6. Embryology of Plants by Bhojwani and Bhatnagar

Course Code	SEM - V: BOTANY-	Credits	Lectures/Week
KUSBOT24503	FORM AND FUNCTIONS- III	2.5	4

Course Outcomes:

- To acquire knowledge about two important organelles and molecular mechanisms of translation.
- To understand water relations of plants, inorganic and organic solute transport, and apply the knowledge to manage mineral nutrition and survival in challenging abiotic stresses.
- To understand succession in plant communities and study remediation technologies in order to apply knowledge acquired for cleanup of polluted sites.
- To get exposure to principles and techniques of plant tissue culture and apply these studies for improving agriculture and horticulture and to become an entrepreneur.

	-	
Unit	Topics	No of
		Lectures
	CYTOLOGY AND MOLECULAR BIOLOGY	
	Structure and function of nucleus	
I	Structure and function of vacuole	4=
	Structure and function of giant chromosomes	15
	• The genetic code: Characteristics of the genetic code	
	Translation in Prokaryotes and Eukaryotes	
	PLANT PHYSIOLOGY I	
II	• Water relations: Potential, osmosis, transpiration, imbibition,	15
	• Solute transport: Transport of ions across cell membranes, active and	15
	passive transport, carriers, channels and pumps.	

	• Translocation of solutes: Composition of phloem sap, girdling experiment.				
	• Pressure flow model (Munch's hypothesis): Phloem loading and				
	unloading, anatomy of sieve tube elements and mechanisms of sieve tube				
	translocation.				
	• Mineral Nutrition: Role of Macro and Micro nutrients, physiological				
	functions and deficiency symptoms.				
	ENVIRONMENTAL BOTANY				
	• Bioremediation: Principles, factors responsible and microbial population in				
	bioremediation.				
III	• Phytoremediation: Metals, Organic pollutants	15			
	• Plant succession: Hydrosere and Xerosere – Formation of Barren Space,				
	Succession on the Land Citing Different Seres leading up to the Climax,				
	Succession in Water, Ecesis, Poly and Mono-climax theories.				
	PLANT TISSUE CULTURE				
	• Aspects of Micro-propagation with reference to Floriculture: Detailed				
	study of Orchid Cultivation				
	• Plant cell suspension cultures for the production of secondary				
IV	metabolites: With special reference to Shikonin production.	15			
	Somatic Embryogenesis and Artificial Seeds.				
	• Protoplast Fusion and Somatic Hybridization: i) Concept, Definition, and				
	various methods of Protoplast Fusion ii) Applications of Somatic Hybridization				
	in Agriculture				

- 1. Introduction to Plant Physiology by Noggle and Fritz, Prentice Hall Publishers(2002)
- 2. Plant Physiology by Salisbury and Ross CBS Publishers
- 3. Plant Physiology by Taiz and Zeiger Sinauer Associates Inc. Publishers, 2002
- 4. Physiological Plant Anatomy by Haberlandt, Mac Millan and Company
- 5. Plant Biotechnology by K. Ramawat

6. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by Dr. P. S. Verma, Dr.V. K. Agarwal, S. Chand publication

Course Code	SEM - V: BOTANY	Credits	Lectures/Week
KUSBOT24504	CURRENT TRENDS IN PLANT SCIENCES – II	2.5	4

Course Outcomes:

- To get exposure to the technique of mushroom cultivation and explore the possibility of entrepreneurship in the same.
- To learn ethnobotanical principles, applications and utilize indigenous plant knowledge for the cure of common human diseases and improvement of agriculture.
- To gain knowledge about the latest molecular biology techniques for isolation and characterization of genes.
- To learn principles and application of commonly used techniques in instrumentation.
- To gain proficiency in the monograph study and pharmacognostic analysis of six medicinal plants.

Unit	Topics	No of Lectures
I	 ETHNOBOTANY AND MUSHROOM INDUSTRY Ethnobotany- Definition, history, sources of data and methods of study. Applications of ethnobotany: Ethno-medicines. 	15

	> Agriculture.	
	Edible plants.	
	Traditional medicines used by tribals in Maharashtra towards	
	Skin ailments: Rubia cordfolia, Sandalwood	
	Liver ailments: <i>Phyllanthus</i> , <i>Andrographis</i>	
	Wound healing and ageing: Centella, Typha, Terminalia, Tridax.	
	Fever: Vitex negundo, Tinospora cordifolia leaves	
	Diabetes: Momordica charantia, Syzygium cuminii	
	• Mushroom industry:	
	> Detail general account of production of mushrooms with respect to	
	methods of Composting, spawning, casing, harvesting of	
	mushroom. Cultivation of Pleurotus, Agaricus, Volvariella	
	mushroom.	
	> General account of mushrooms: Nutritional value, picking and	
	packaginig, economic importance.	
	PLANT BIOTECHNOLOGY I	
	• Construction of genomic DNA libraries, Chromosome libraries and c- DNA	
	libraries.	
II	• Identification of specific cloned sequences in c-DNA libraries and Genomic	15
	libraries	
	• Analysis of genes and gene transcripts –Restriction enzyme, analysis of	
	cloned DNA sequences. Hybridization(Southern Hybridization)	
	INSTRUMENTATION	
	• Colorimetry and Spectrophotometry (Visible, UV and IR) –	
III	Instrumentation, working, principle and applications.	15
	• Chromatography: General account of Column chromatography. Principle	
	and bedding material involved in adsorption and partition chromatography, ion	
	exchange Chromatography, molecular sieve chromatography.	

PHARMACOGNOSY AND MEDICINAL BOTANY	
• Monographs of drugs with reference to biological sources,	
geographical distribution, common varieties, macro and microscopic	
characters, chemical constituents, therapeutic uses, adulterants- Strychnos	15
seeds, Senna leaves, Clove buds, Allium sativum, Acorus calamus and	
Curcuma longa	
	• Monographs of drugs with reference to biological sources, geographical distribution, common varieties, macro and microscopic characters, chemical constituents, therapeutic uses, adulterants- <i>Strychnos</i> seeds, <i>Senna</i> leaves, Clove buds, <i>Allium sativum</i> , <i>Acorus calamus</i> and

- 1. A handbook of Ethnobotany by S.K. Jain, V. Mudgal
- 2. Plants in folk religion and mythology (Contribution to Ethnobotany by S.K.Jain3rdRev.Ed.).
- 3. Plant Biotechnology by K. Ramawat
- 4. Ayurveda Ahar by P H Kulkarni

SEMESTER V-PRACTICAL

Course Code	SEM V -Botany practical	Credits	Lectures/ Week
KUSBOT24P5	PRACTICAL PAPER I-PLANT DIVERSITY III	1.5	

Microbiology

• Study of aeromicrobiota by petriplate exposed method: Fungal culture,

Bacterial culture.

- Determination of Minimum Inhibitory Concentration (MIC) of sucrose against selected microorganism.
- Study of antimicrobial activity by the disc diffusion method.

Algae (G.M. Smith Classification System to be followed)

- Study of stages in the life cycle of the following Algae from fresh / preserved material and permanent slides.
- > Polysiphonia
- **▶** Batrachospermum
- Vaucheria
- Pinnularia

Fungi (G.M. Smith Classification System to be followed)

- Study of stages in the life cycle of the following Fungi from fresh / preserved material and permanent slides
- > Agaricus
- > Puccinia
- > Alternaria

Plant Pathology

- Study of the following fungal diseases:
- White rust in Cruciferae (Brassicaceae)

- Tikka disease in Groundnut
- > Damping off disease
- Citrus canker
- Leaf curl in *Papaya Leaf*

Course Code	SEM V -Botany practical	Credits	Lectures/ Week
KUSBOT24P5	PRACTICAL PAPER II-PLANT DIVERSITY IV	1.5	

Paleobotany

- Study of the following form genera with the help of permanent slides/ photomicrographs.
- > Lepidodendron
- > Lyginopteris
- > Pentoxylon

Angiosperms I

- Morphology of Flower All Parts of Flower
- Study of one plant from each of the following Angiosperm families as per

Bentham and Hooker's system of classification.

- > Capparidaceae
- Umbelliferae
- Cucurbitaceae
- Rubiaceae
- Solanaceae
- > Commelinaceae
- Graminae
- Morphological peculiarities and economic importance of the members of

the above-mentioned Angiosperm families

• Identifying the genus and species of a plant with the help of Flora

Anatomy I

- Study of anomalous secondary growth in the stems of the following plants using double staining technique.
- 1) Bignonia
- 2) Salvadora
- 3) Achyranthes
- 4) Dracaena
- Study of anomalous secondary growth in the roots of
- 1) Beet
- 2) Radish
- Types of Stomata
- 1) Anomocytic
- 2) Anisocytic
- 3) Diacytic
- 4) Paracytic
- 5) Graminaceous

Palynology I

• Study of pollen morphology (NPC Analysis) of the following by

Chitale's Method

- > Hibiscus
- Datura
- Ocimum
- > Crinum
- Pancratium
- Canna
- Determination of pollen viability
- Pollen analysis from honey sample unifloral and multifloral honey

• Effect of varying concentration of sucrose on *In vitro* Pollen germination

Course Code	SEM V -Botany practical	Credits	Lectures/ Week
KUSBOT24P6	PRACTICAL -PAPER III FORM AND FUNCTION III	1.5	

Cytology and Molecular Biology

- Mounting of Giant chromosomes from *Chironomous* larva
- Smear preparation from *Tradescantia* buds
- Predicting the sequence of amino acids in the polypeptide chain that will be formed following translation(Eukaryotic)

Plant Physiology I

- Estimation of Phosphate phosphorus (Plant acid extract)
- Estimation of Iron (Plant acid extract)

Note: Preparation of a standard graph and determination of the multiplication

factor for Phosphate / Iron estimation using a given standard phosphate /

Standard Iron solution should be done in regular practical as this will also be

put as a question in practical exam

Environmental Botany

- Estimation of the following in given water sample
- Dissolved oxygen demand
- Biological oxygen demand
- Hardness
- Salinity and Chlorinity

Micropropagation

- Plant Tissue culture:
- Identification Multiple shoot culture, hairy root culture, somatic

embryogenesis

 Preparation of stock solutions for preparation of MS medium
 (Note: Concept of preparation of specified molar solutions should be taught and problems based on preparation of stock solutions for tissue culture media will be given).

Course Code	SEM V-Botany practical	Credits	Lectures/ Week
KUSBOT24P6	PRACTICAL – PAPER IV CURRENT TRENDS IN PLANT SCIENCES II	1.5	

Ethnobotany and mushroom industry

- Study of plants mentioned in theory for Ethnobotany
- Mushroom cultivation (To be demonstrated)
- Identification of various stages involved in mushroom cultivation spawn, pin head stage, mature/ harvest stage of *Agaricus, Pleurotus, Volvariella*

Biotechnology I

- Growth curve of E. coli
- Plasmid DNA isolation and Separation of DNA using AGE
- Restriction mapping (problems), Southern blotting

Instrumentation

- Demonstration of Beer Lambert's Law
- Experiment based on ion exchange chromatography for demonstration
- Experiment based on separation of dyes/ plant pigments using silica gel column.

Pharmacognosy

 Macroscopic/ Microscopic characters and Chemical tests for active constituents of the following plants.

- > Allium sativum
- > Acorus calamus
- > Curcuma longa
- > Senna angustifolia
- > Strychnos nux-vomica
- > Eugenia caryophyllata

Course Code	SEM – VI BOTANY	Credits	Lectures/ Week
KUSBOT24601	PLANT DIVERSITY – III	2.5	

Course Outcomes:

- To identify, describe and study in detail the life cycles of three Bryophytes.
- To and study in detail classification and general characters of three classes of Pteridophytes and identify as well as describe the life cycles of one
- To study evolutionary aspects and economic utilization of Bryophytes and Pteridophytes.
- To identify, describe and study in detail the life cycles of three Gymnosperms.

Unit	Topics	No of Lectures
I	BRYOPHYTA (G. M. SMITH CLASSIFICATION SYSTEM TO BE FOLLOWED) Structure, life cycle, systematic position and alternation of • Life cycle of Marchantia • Life cycle of Pelia • Life cycle of Sphagnum	15
II	PTERIDOPHYTE (G. M. SMITH CLASSIFICATION SYSTEM TO BE FOLLOWED) • Lepidophyta – Classification, general characters; Life cycle of • Lycopodium • Calamophyta – Classification, general characters; Life cycle of • Equisetum	15

	Pterophyta - Classification, general characters; Life cycle of	
	Adiantum and Marselia	
	BRYOPHYTES AND PTERIDOPHYTES: APPLIED ASPECTS	
	• Ecology of Bryophytes.	
	• Economic importance of Bryophytes.	
111	• Bryophytes as Indicators.	15
III	• Evolution of Sporophyte and Gametophyte in Bryophytes.	15
	• Economic importance of Pteridophytes	
	• Diversity and distribution of Indian Pteridophytes	
	• Types of Sori and Evolution of Sori in Pteridophytes.	
	GYMNOSPERMS (CHAMBERLAIN'S CLASSIFICATION SYSTEM TO	
	BE	
	FOLLOWED)	
IV	• Life cycle of <i>Thuja</i> ,	15
	• Life cycle of <i>Gnetum</i>	
	• Life cycle of <i>Ephedra</i> .	
	Economic importance of Gymnosperms	

- 1. College Botany Vol I and II by Gangulee Das and Dutta Central Education enterprises.
- 2. Cryptogamic Botany Vol I and II by G M Smith, Mcg raw Hill

Course Code	SEM – VI BOTANY	Credits	Lectures/ Week
KUSBOT24602	PLANT DIVERSITY – IV	2.5	

Course Outcomes:

- To study contribution of Botanical gardens, BSI to Angiosperm study and provide plant description, describe the morphological and reproductive structures of seven families.
- To gain exposure to a phylogenetic system of classification.
- To gain insight into the anatomical adaptations of different ecological plant groups.
- To understand development plant of male and female gametophytes, embryonic structure and development.
- To understand the different aspects and importance of Biodiversity and utilize them for conservation of species so as to prevent further loss or extinction of Biodiversity and preserve the existing for future generations.

Unit	Topics	No of Lectures
	ANGIOSPERMS II	
	• Major Botanic gardens of India— Indian Botanic Garden,	
	Howrah; National Botanic Garden (NBRI) Lucknow; Lloyd	
	Botanic Garden, Darjeeling; Lalbaugh Botanic Garden, Bangaluru.	
I	Botanical survey of India and regional branches of India	15
	Bentham and Hooker's system of classification for flowering	
	plants up to family with respect to the following prescribed	
	families and economic importance, medicinal importance and fruit	
	morphology for members of the families	

	N	
	> Rhamnaceae	
	> Combretaceae	
	> Asclepiadaceae	
	➤ Labiatae	
	> Euphorbiaceae	
	Cannaceae	
	• Hutchinson's classification system of Angiosperms Brief	
	Introduction, Merits and Demerits of Hutchinson's Classification	
	System	
	ANATOMY II	
	• Ecological anatomy	
	➤ Hydrophytes – submerged, floating, rooted	
	> Hygrophytes - Typha	
II	> Mesophytes	15
	> Sciophytes	
	> Halophytes	
	> Epiphytes	
	> Xerophytes	
	EMBRYOLOGY	
	• Microsporogenesis	
	• Megasporogenesis- Development of monosporic type, examples	
III	of all embryo sacs	15
	• Types of ovules	
	Double fertilization	
	• Development of embryo–Capsella	
	PLANT GEOGRAPHY	
	• Phytogeographical regions of India.	
IV	• Biodiversity:	15
	 Definition, diversity of flora found in various forest types of India 	
		1

- Levels of biodiversity
- > Importance and status of biodiversity
- Loss of biodiversity
- Conservation of biodiversity
- Genetic diversity- Molecular characteristics

- 1. An introduction to Embryology of Angiosperms by P Maheshwari, McGraw Hill Book Co.
- 2. Plant Systematics by Gurcharan Singh, Oxford and IBH Publ.
- 3. Taxonomy of Vascular Plants by Lawrence George, H M, Oxford and IBH Publ.
- 4. Physiological Plant Anatomy by Haberlandt, Mac Millan and Company

Course Code	SEM – VI BOTANY	Credits	Lectures/ Week
KUSBOT24603	FORMS AND FUNCTION – III	2.5	

Course Outcomes:

- To study various plant biomolecular structures and appreciate the structures, role, functions and applications of enzymes.
- To gain insight into the Nitrogen and plant hormone metabolism with applications of the same in agriculture and horticulture.
- To understand principles of genetic mapping, mutations and solve problems based on them, gain knowledge of various metabolic disorders and their implications.
- To generate and test hypotheses, make observations, collect data, analyze and interpret results, derive conclusions, and evaluate their significance within a broad scientific context, using suitable statistical techniques.

Unit	Topics	No of Lectures
	PLANT BIOCHEMISTRY	
	• Structure of biomolecules: Carbohydrates (sugars, starch,	
I	cellulose, pectin, lipids (fatty acids and glycerol), proteins (amino acids)	15
	• Enzymes: Nomenclature, classification, mode of action, Enzyme	
	kinetics, Michaelis-Menten equation, competitive, noncompetitive	
	and un-competitive inhibitors.	
	PLANT PHYSIOLOGY II	
	• Nitrogen Metabolism: Nitrogen cycle, root nodule formation,	
	and leghaemoglobin, nitrogenase activity, assimilation of nitrates,	
II	(NR, NiR activity), assimilation of ammonia, (amination and	15
11	transamination reactions), nitrogen assimilation and carbohydrate	15
	utilization.	
	Physiological effects and commercial applications of Auxins,	
	Gibberillins, Cytokinins and Abscisic acid	
	GENETICS	
	• Genetic mapping in eukaryotes: discovery of genetic linkage,	
	gene recombination, construction of genetic maps, three- point	
III	crosses and mapping chromosomes, problems based on the same	
	• Gene mutations: definition, types of mutations, causes of	15
	mutations, induced mutations, the Ame's test	
	Metabolic disorders— enzymatic and non-enzymatic: Gene	
	control of enzyme structure Garrod's hypothesis of inborn errors	
	of metabolism, Phenyl ketone urea.	

	BIOSTATISTICS	
13.7	• Test of significance student's <i>t</i> -test – Paired and Unpaired.	4 =
IV	• Regression.	15
	• ANOVA (one way).	

- 1. Introduction to Plant Physiology by Noggle and Fritz, Prentice Hall Publishers (2002)
- 2. Plant Physiology by Salisbury and Ross CBS Publishers
- 3. Plant Physiology by Taiz and Zeiger Sinauer Associates Inc. Publishers, 2002
- 4. Practical Biochemistry by David Plummer, McGraw Hill Publ.
- 5. DNA barcoding plants: taxonomy in a new perspective 2010. K Vijayan and C H Tsou, Current Science, 1530 –1541.
- 6. Introduction to Biostatistics by P K Banerjee, Chand Publication.
- 7. Genetics by Russel Peter Adison Wesley Longman Inc. (5thedition)
- 8. An introduction to Genetic analysis Griffith Freeman and Company(2000)
- 9. Fundamentals of Biostatics by Rastogi, Ane Books Pvt. Ltd.(2009).

Course Code	SEM – VI BOTANY	Credits	Lectures/ Week
KUSBOT24604	Current Trends in Plant Science – II	2.5	

Course Outcomes:

- To gain insight into recent molecular biology techniques for DNA analysis and amplification and Barcoding techniques and applications therein.
- To understand and apply tools of Bioinformatics for data retrieval and phylogenetic analysis.
- To learn about the sources of economically important plants in the field of fats and oils and apply it for extraction, dealing with entrepreneurship in the field.
- To gain knowledge and proficiency in preservation of post-harvest produce and explore the

possibility of entrepreneurship in the field.

Unit	Topics	No of
Ome		Lectures
	PLANT BIOTECHNOLOGY II	
	• DNA sequence analysis – Maxam – Gilbert Method and Sanger's	
	method, Pyro Sequencing.	
I	• Polymerase Chain Reaction (PCR).	15
	• DNA barcoding: Basic features, nuclear genome sequence,	
	chloroplast genome sequence, rbcL gene sequence, mat K gene	
	sequence, present status of barcoding in plants.	
	BIOINFORMATICS	
	Organization of biological data, databases	
II	• Exploration of data bases, retrieval of desired data, BLAST.	15
	Protein structure analysis and application	
	Multiple sequence analysis and phylogenetic analysis	
	ECONOMIC BOTANY	
	• Essential Oils: Extraction, perfumes, perfume oils, oil of Rose,	
	Sandalwood, Patchouli, Champaca, grass oils: Citronella, Vetiver.	
III	• Fatty oils: Drying oil (Linseed and Soyabean oil), semidrying oils	15
	(Cotton seed, Sesame oil) and non-drying oils (Olive oil and	
	Peanut oil),	
	Vegetable Fats: Coconut and Palm oil	
	POST HARVEST TECHNOLOGY	
	• Storage of Plant Produce – Preservation of Fruits and Vegetables	
IV	➤ Drying (Dehydration) – Natural conditions – Sun drying,	15
	Artificial Drying – Hot Air Drying, Vacuum Drying,	
	Osmotically Dried Fruits, Crystallized or Candied Fruits, Fruit	

Leather, Freeze Drying)

Freezing (Cold Air Blast System, Liquid Immersion method,

Plate Freezers, Cryogenic Freezing, Dehydro-Freezing, Freeze

Drying),

- Canning
- ➤ Pickling (in Brine, in Vinegar, Indian Pickles)
- Sugar Concentrates (Jams, Jellies, Fruit juices)
- > Food Preservatives
- > Use of Antioxidants in Preservation

Reference books:

- 1. A handbook of Ethnobotany by S.K. Jain, V. Mudgal
- 2. Plants in folk religion and mythology (Contribution to Ethnobotany by S.K.Jain3rdRev.Ed.).
- 3. Plant Biotechnology by K. Ramawat
- 4. Pharmacognosy by Kokate, Purohit and Gokhale, Nirali Publications
- 5. Bioinformatics by Sunder Rajan
- 6. Instant Notes on Bioinformatics by Westhead (2002), Taylor Francis Publications.
- 7. Bioinformatics by Ignasimuthu
- 8. DNA barcoding plants: taxonomy in a new perspective 2010. K Vijayan and C H Tsou, Current Science, 1530 –1541.
- 9. Economic Botany by A F Hill, TATA McGRAW-HILL Publishing Co. Ltd.
- 10. Post-Harvest Technology by Verma and Joshi, Indus Publication

SEMESTER VI-PRACTICAL

Course Code	SEM VI -Botany practical	Credits	Lectures/ Week
KUSBOT24P7	PRACTICAL PAPER I-PLANT DIVERSITY III	1.5	

Bryophyta (G.M. Smith Classification System to be followed)

- Study of stages in the life cycle of the following Bryophyta from fresh / preserved material and permanent slides
- Marchantia
- > Pelia
- Sphagnum

Pteridophyta (G.M. Smith Classification System to be followed)

• Study of stages in the life cycles of the following Pteridophytes from

fresh / preserved material and permanent slides

- > Lycopodium
- > Equisetum
- > Adiantum
- Marselia

Bryophytes and Pteridophytes: Applied aspects

- Economic importance of Bryophyta
- Economic importance of Pteridophyta
- Types of Sporophytes in Bryophyta (from Permanent slides)
- Types of Sori and Soral Arrangement in Pteridophytes

Gymnosperms (Chamberlain's Classification System to be followed)

- Study of stages in the life cycles of the following Gymnosperms from fresh / preserved material and permanent slides
- > Thuja
- **→** Gnetum

- > Ephedra
- Economic importance of Gymnosperms

Course Code	SEM VI -Botany practical	Credits	Lectures/ Week
KUSBOT24P7	PRACTICAL PAPER II-PLANT DIVERSITY IV	1.5	

Angiosperms II

- Study of one plant from each of the following Angiosperm families as per Bentham and Hooker's system of classification.
- Rhamnaceae
- Combretaceae
- Asclepiadaceae
- **Labiatae**
- Euphorbiaceae
- Cannaceae
- Morphological peculiarities and economic importance of the members of the above-mentioned Angiosperm families
- Identify the genus and species with the help of flora

Anatomy II

- Study of Ecological Anatomy of
- Hydrophytes: *Hydrilla* stem, *Nymphaea* petiole, *Eichhornia* offset
- > Epiphytes: Orchid
- Sciophytes: *Peperomia* leaf
- > Xerophytes: Nerium leaf, Opuntia phylloclade
- Halophytes: Avicennia leaf and pneumatophore, Sesuvium / Sueda leaf
- ➤ Mesophytes: *Vinca* leaf

Embryology

- Study of various stages of Microsporogenesis, Megasporogenesis and Embryo Development with the help of permanent slides / photomicrographs
- Mounting of Monocot (Maize) and Dicot (Castor and Gram)embryo
- In vivo growth of pollen tube in Portulaca /Vinca

Plant Geography

- Study of phytogeographic regions of India
- Preparation of vegetation map using Garmin's GPS Instrument
- Problems based on Simpson's diversity Index

Course Code	SEM VI -Botany practical	Credits	Lectures/ Week
KUSBOT24P8	PRACTICAL -PAPER III FORM AND PRACTICAL PAPER III-FORM AND FUNCTION III	1.5	

Plant Biochemistry

- Estimation of proteins by Biuret method
- Effect of temperature on the activity of amylase
- Effect of pH on the activity of amylase
- Effect of substrate variation on the activity of amylase

Plant Physiology II

- Determination of alpha-amino nitrogen
- Effect of GA on seed germination
- Estimation of reducing sugars by DNSA method

Genetics

• Problems based on three-point crosses, construction of chromosome

maps

- Identification of types of mutations from given DNA sequences
- Study of mitosis using pre-treated root tips of *Allium*

Biostatistics

- Problems based on regression analysis
- ANOVA (One Way)

Course Code	SEM VI - Botany practical	Credits	Lectures/ Week
KUSBOT24P8	PRACTICAL PAPER IV CURRENT TRENDS IN PLANT SCIENCES II	1.5	

Course Outcomes:

After successful completion of this course, students would be able to

Plant Biotechnology II

- DNA sequencing by Sanger's Method and Pyro Sequencing Method
- DNA barcoding of plant material by using suitable data

Bioinformatics

- BLAST: nBLAST, pBLAST
- Multiple sequence alignment
- Phylogenetic analysis
- RASMOL/SPDBV

Economic Botany

- Demonstration: Extraction of essential oil using Clevenger
- Thin layer chromatography of essential oil of Patchouli and Citronella
- Saponification value of Palm oil

Post-Harvest Technology

•	• Preparation of		
>	Squash		
>	Jam		
>	Jelly		
>	Pickle		

Scheme of Evaluation:

Theory Course: (External)	60 Marks Each Theory Paper
Theory Course: (Internal)	40 Marks Each Theory Paper
Practical Course : (External)	30 Marks Each Practical Paper
Practical Course : (Internal)	20 Marks Each Practical Paper

Modality of Assessment:

Theory Evaluation Pattern: 100 Marks (60:40-External: Internal)

A) Internal Assessment - 40%

Theory - 40 marks

Sr No	Evaluation type	Marks
1	One Assignments/Case study/Project	20
2	One class Test (multiple choice questions / objective)	20

B) External Assessment - 60 %

Semester End Theory Assessment -

60 marks

- i. Duration These examinations shall be of two hours duration.
- ii. Theory question paper pattern:-
- 1. There shall be **five** questions each of **12** marks. On each unit there will be one question & fifth one will be based on all the four units.
- 2. All questions shall be compulsory with internal choice within the questions. Each question will be of **24** marks with options.
- 3. Questions may be sub divided into sub questions a, b, c & d only, each carrying six marks OR a, b, c, d,e & f only each carrying four marks and the allocation of marks depends on the weightage of the topic.

Practical Examination Pattern:

Total:- 50 marks

(A)Internal Examination: 40 %

20 marks

Sr No.	Particulars	Marks
1	Short Experimental Work	10
2	Filed trip /Excursion /Industrial Visit /Journal /Viva	10

(B) External (Semester end practical examination) :- 60%

30 marks

Sr No.	Particulars	Marks
1	Laboratory work	25
2	Journal/Viva	05

PASSING STANDARD AUTONOMY Third Year:

- The learners /students shall obtain minimum of 40% marks in the Internal Assessment and External Assessment (Semester End Examination) COMBINED, to pass the course in a particular semester. A learner / student will be said to have passed the course if He/She passes the Internal Assessment + Semester End Examination COMBINED.
- To pass the examination attendance is compulsory in both internal and external (theory plus practical) examination.

NOTE:

Two short field excursions for habitat studies are compulsory. Field work of not less than eight hours duration is equivalent to one period per week for a batch of 15 students.

Practical examination will be held at the college / institution at the end of the semester. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head of the Department/ Co-ordinator of the department; failing which the student will not be allowed to appear for the practical examination.