AC: 02.06.2025 ITEM NO: 22.1

Deccan Education Society's

Kirti M. Doongursee College of Arts, Science and Commerce (AUTONOMOUS)

Affiliated to UNIVERSITY OF MUMBAI

Syllabus for

Program: Bachelor of Science

Course: F.Y.B.Sc (NEP 2023-24)

Subject: Chemistry

Choice Based Credit System (CBCS) with effect from Academic Year 2024-2025

Deccan Education Society's

Kirti M. Doongursee College (Autonomous) Proposed Curriculum as per NEP 2020 Year of implementation- 2024-25

Name of the Department: Chemistry

Semester	Course Code	Course Title	Vertical	Credit
	24CHEMJ111	Fundamental Chemistry-I	Major	2
	24CHEMJP111	Practical-I	Major	2
I	24CHEOE131	Chemical Technology and Society	Open Elective	2
	24CHEVC141	Good Laboratory Practices(GLP)	Vocational Skill Course	2
	24CHESC151	Food Chemistry-I	Skill Enhancement Course	2
	24CHEMJ211	Fundamental Chemistry-II	Major	2
II	24CHEMJP211	Practical-II	Major	2
	24CHEVC241	Green Chemistry	Vocational Skill Course	2
	24CHESC251	Food Chemistry-II	Skill Enhancement Course	2

PO	Description
A stud	ent completing Bachelor's Degree in Science Program will be able to
P01	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of a graduate Programme. Execute strong theoretical and practical understanding generated from the specific graduate Programme in the area of work.
P02	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions
P03	Social competence: Display the understanding, behavioral skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research
P05	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
P06	Personal and professional competence: Performing dependently and collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
P07	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centered national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
P08	Environment and Sustainability:

Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PROGRAM OUTCOME SEM - I

Course Code		MAJOR	Credits	Lectures /Week			
K23USC	HEMJ111	Paper I FUNDAMENTAL CHEMISTRY-I	2	2			
	Course Outcomes: After successful completion of this course, students would be able to						
CO1:	concepts of Classificat	mathematical formulae related to concentrate of atomic structure, long form of periodic table ion of various organic compounds on the based write the names of organic molecules	e. Recall th	ie			
CO2:	Comprehend the concept of stoichiometry for chemical equations, various models of atomic structure, behavior of electrons in atomic structure, properties of periodicity of elements. Understand various intricacies of organic reaction mechanisms						
CO3:	1	knowledge of mathematics in chemistry. Wri mpounds in various projection formulae.	ting structi	ires of			
CO4:		te the elements on the basis of their propert ersions of various projection formulae of strus.	-				
Unit		Topics		No of Lectures			
I	1.1 Chemical mathematics. Expressing concentration of solutions: Normality, molality, molarity, formality, mole fractions, ppm, ppb, millimoles, milliequivalents (Numerical expected).						
	between the	ical Kinetics- Rate Laws: Rate laws, the rene rate of a chemical reaction and the concests. Rate Determining Step, a reaction mech	entrations	07			

the determination of the rate law. Rate Constants, coefficients in the rate laws, and quantitative information about the rate of reaction. Integrated Rate Laws Order of Reaction. (Numerical expected).	
Comparative chemistry of Main Group Elements: (06L) Comparative chemistry of oxides and hydroxides of group I and group II elements. (02L) oxides of carbon, oxides of Sulphur and Nitrogen with respect to environmental aspects like greenhouse effect, photochemical smog and acid rain. (04L)	06L 04L
Acid Base Theories (4L) Arrhenius, Lowry- Bronsted, Lewis, Solvent – Solute concept of acids and bases,	
Classification and Nomenclature of Aliphatic Organic Compounds. Classification on the basis of functional groups: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides),nitro compounds, nitriles and amines with at least two examples of each. Fundamentals of organic reaction mechanism: Electronic effects: Inductive, Electromeric, resonance, Mesomeric effects and hyperconjugation.	(10L)
Basic terms and concepts: Homolytic and Heterolytic fission with suitable examples, Electrophiles and Nucleophiles ,Nucleophilicity and basicity ,Electrophilicity and Acidity. Writing organic structures (Tartaric acid) in Fischer, Sawhorse, Newman's projections, and flying wedge-dash, zig-zag formula.	
	the rate laws, and quantitative information about the rate of reaction. Integrated Rate Laws Order of Reaction. (Numerical expected). Comparative chemistry of Main Group Elements: (06L) Comparative chemistry of oxides and hydroxides of group I and group II elements. (02L) oxides of carbon, oxides of Sulphur and Nitrogen with respect to environmental aspects like greenhouse effect, photochemical smog and acid rain. (04L) Acid Base Theories (4L) Arrhenius, Lowry- Bronsted, Lewis, Solvent – Solute concept of acids and bases, Classification and Nomenclature of Aliphatic Organic Compounds. Classification on the basis of functional groups: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines with at least two examples of each. Fundamentals of organic reaction mechanism: Electronic effects: Inductive, Electromeric, resonance, Mesomeric effects and hyperconjugation. Basic terms and concepts: Homolytic and Heterolytic fission with suitable examples, Electrophiles and Nucleophiles, Nucleophilicity and basicity, Electrophilicity and Acidity. Writing organic structures (Tartaric acid) in Fischer, Sawhorse,

<u>Unit I</u>

1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press (2014).

- 2. Ball D.W., Physical Chemistry, Thomson Press, India (2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa (2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson (2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi (2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill (2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series (2006).
- 10. Rice. Physical Chemistry, 2nd Ed., Oxford University Press: (2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill (1994).
- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).

Unit II

- 1. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- 2. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- 3. Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- 4. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.
- 5. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.

Course Code		OPEN ELECTIVE	Credits	Lectures /Week
K23U	JSCHEOE131	Paper-I CHEMICAL TECHNOLOGY AND SOCIETY	2	2
Course	e Outcomes: A	fter successful completion of this course, students	s would be	able to
CO1:		sic principles of distillation, solvent extraction, so extraction, separation by absorption and adsorption	-	eaching and
CO2 :		Chemical and scientific literacy as a means to be vater (and the trace materials found in them t		_
CO3 :	Apply Differen	t - types of equipment needed in chemical technol	ogy	
CO4 :	Interconversions from simple examples like combustion to complex inst genetic engineering and the manufacture of drugs			stances like
Unit	Topics			No of Lectures
I	Basic Analytical Techniques: Purification of solids. Filtration, filtration under suction, crystallization, Fractional crystallization, Basic principles of distillation, Simple distillation, Fractional distillation, Distillation under reduced pressure, solvent extraction, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption.		inciples on under	15
II	Exploration of societal and technological issues from a chemical perspective. Chemical and scientific literacy as a means to better understand topics like air and water (and the trace materials found in them that are referred to as pollutants); energy from natural sources (i.e. solar and renewable forms), from fossil fuels and from nuclear fission; materials like plastics and polymers and their natural analogues, proteins and nucleic acids, and molecular reactivity and Interconversions from simple examples like combustion to complex instances like genetic engineering and manufacture of drugs.		15	

1. John W. Hill, Terry W. McCreary & Doris K. Kolb, Chemistry for changing times 13th Ed.

Course Code		SKILL ENHANCEMENT COURSE	Credits	Lectures /Week		
K23U	SCHESC15	Paper-I FOOD CHEMISTRY-I	2	4		
	Course Outcomes: After successful completion of this course, students would be able to CO1 To know about adulteration					
CO2	To unders	tand about adulterant				
CO3	To find ou	t different examples of adulterant				
CO4	Student get trained about finding to adulteration in day to day using ed materials					
Unit	Topics			No of hours		
I	 Det Ide Det 	ection of coloured adulterant in red chillication of sugar/dextrose from Honey tification of adulterant added in fruits and vegetion of artificial colors in Green peasection of chalk powder/urea/washing soda from ection of adulterant in turmeric powder ection of adulterant in tea powder ection of adulterant in coffee al identifications of adulterant in different food ection of sodium Bicarbonate in cooked food section of adulterant in cooking oil ection of adulterant in pure ghee	n sugar. d grains	60		

- 1. Food safety and standard authority of India (FSSAI) New Delhi
- 2. Manual of methods of analysis of foods: Milk and milk products D.G.H. Services (Ed.) 2005
- 3. Detection of adulterants in milk, A laboratory manual In N.D.R. Institute (Ed.) Karnal Haryana India 2012.
- 4. www.rjptonline.org. Research Journal of Pharm and Tech.Sept.2017.

- 5. Manual of methods of analysis of foods honey& other bee hive products (FSSAI)
- 6. Manual of methods of analysis of foods food safety and standards authority of India ministry of health and family welfare government of India new Delhi 2015
- 7. Food Adulteration Testing Manual (14th Revised Edition) –Consumer Guidance Society of India (CGSI) Mumbai-2019

Course Code		VOCATIONAL SKILL COURSE	Credits	Practicals /Week
K231	USCHEVC141	Good Laboratory Practices (GLP)	2	4hrs
Cours	e Outcomes: A	fter completing this course, the learner will	be able to:	
CO1	Apply practic laboratory pr	al skills in science courses with the und	erstanding	g of general
CO2	Use various te	echniques in Chemistry		
CO3	Apply various Chemistry.	techniques to study chemical compounds	and basic	concepts in
CO4	Explore vario	us research issues in chemistry and their so	lutions	
		Experiments		No of Practicals
 Introduction: Concept of molarity, molality, normality and percentage. Introduction of primary and secondary standards. Techniques of handling analytical balance, micropipettes, pH meter, Conductivity Meter, Potentiometer, Colorimeter etc. Introduction to Chromatographic Techniques 1. Preparation of solutions of different strengths (Molar, molal, normal and percentage solutions) and its standardization.(4-5 Experiments). 2. Use of burettes, pipettes (micropipettes), analytical balance etc.(2-3 experiments). 3. Use of pH meter, Conductivity Meter, Potentiometer, Colorimeter(4 experiments). 4. Chromatographic techniques (Paper & TLC) (4 experiments). 5. Paper chromatographic separation of Co(II) & Ni(II). 6. Paper chromatographic separation of Fe(III) and Al(III). 7. Separation of a mixture of two amino acids by paper chromatography 			15	

- **1.** Mendham, J., A.I.Vogel's Quantitative Analysis 6th Ed., Pearson, 2009 CBCS: B. Sc. (Honours) with CHEMISTRY.
- **2.** Garner, W.Y., Barge M.S., Ussary. P.J. (1992). Good Laboratory Practice Standards: Application for field and Laboratory studies. Wiley VCH.
- **3.** Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)

SEM II

Co	Course Code MAJOR		Credits	Lectures /Week	
K23	USCHEMJ211	Paper I FUNDAMENTAL CHEMISTRY - II	2	2	
	se Outcomes: successful comp	letion of this course, students would be able	to		
CO1		ns and laws involved in chemical thermodyn tive Analysis; Define and classify Hydrocarbo		l base	
CO2	Understand th chemistry Hyd	e concepts of thermodynamic parameters; U rocarbons.	nderstand	the	
CO3		Kirchhoff's equation, Applications of Qualitat organic reactions; To study the reactions and drocarbons.	-		
CO4		alysis of strong acid and strong base. Analyze in different kinds of reactions.	the reacti	ons of	
Unit		Topics			
	Chemical ther	rmodynamics		03	
	1.1Thermodynamic terms: System, surrounding, boundaries, open, closed and isolated system, intensive and extensive properties, state functions and path functions,				
I	2.2 Laws of thermodynamics: zero th , First and second law of thermodynamics: Concept of heat (q) work (w), internal energy (U), statement of the first law, enthalpy the relation between heat capacities, sign conventions, calculations of heat (q), work (w), internal energy (U), and enthalpy (H) (Numerical expected) Thermochemistry: Heats of reactions standard states, enthalpy of formation of molecules, enthalpy of combustion and its applications, calculation of bond energy, bond dissociation energy and resonance energy from thermochemical				

	Chemical Bond and Reactivity:(06 L)	
II	Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), shapes of molecules, Lewis dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, isoelectronic principles, applications and limitations of VSEPR theory.	06
	Concept of Qualitative Analysis (4L) Precipitation equilibria-: solubility product, effect of common ions, uncommon ions, oxidation states, buffer action, complexing agents	
	on precipitation of ionic compounds (Balanced chemical equations and numerical problems expected)	
		04
	CHEMISTRY OF ALIPHATIC HYDROCARBONS	10
	Chemistry of Alkanes : Formation of alkanes, Wurtz reaction, Wurtz-Fittig reaction, free radical substitution (chlorination of methane with mechanism)	
III	Chemistry of Alkenes and Alkynes: Formation of alkenes and alkynes by elimination reactions, Saytzeff and Hofmann elimination	
111	Reactions of alkenes: Eletrophilic additions and their mechanisms (Markownikoff/AntiMarkownikoff addition), Ozonolysis, Diel's-Alder reaction, Allylic and Benzylic bromination using NBS, e.g. propene, 1-butene, ethylbenzene.	
	Reaction of alkynes: acidity, electrophilic and nucleophilic additions, hydration to form carbonyl compounds, alkylation of terminal alkynes.	

Unit I

- 1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press (2014).
- 2. Ball D.W., Physical Chemistry, Thomson Press, India (2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa (2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson

- (2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi (2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill (2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series (2006).
- 10. Rice. Physical Chemistry, 2nd Ed., Oxford University Press: (2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill (1994).
- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).

Unit II

- 1. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- 2. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- 3. Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- 4. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.
- 5. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.

Unit-III

- 1. Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education).2012
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 4. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 5. Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Agem International, 20

Course Code		VOCATIONAL SKILL COURSE	Credits	Lectures /Week	
K23	USCHEVC241	Paper I GREEN CHEMISTRY	2	4	
CO1	Recollect - The	principles of green chemistry			
CO2	Understand - h chemistry	penefits of green synthesis and various me	ethods in gr	een	
CO3	to synthesize v	various products and extract natural proci	lucts from p	lants	
CO4		nalyze pH indicators in plants and various	natural pro	oducts.	
	•				
1	To prepare 1,4 pestle)	-dihydroquinoxaline-2,3-dione- Green syn	thesis (Mor	tar and	
2	Synthesis of co	pper nanoparticles by green method.			
3	Preparation of	Biodegradable Plastic from Starch.			
4	Extraction of E	ssential Oils from Citrus Peels using Dry I	ce.		
5	To synthesize	Aspirin from Salicylic Acid by greener met	hod		
6	Synthesis of Iro	on Oxide Nanoparticles using green chemi	stry princip	oles	
7	Green Synthes:	s of Zinc Oxide Nanoparticles.			
8	Extraction of L	ycopene from Tomatoes using a greener n	nethod.		
9	To extract Curcumin from Turmeric.				
10	To use and know about Natural pH Indicators from Plants.				
11	Water Purification Using Activated Charcoal.				
12	To prepare Ch	oline Chloride Based Deep Eutectic Sol	vent. (Maxi	mum three	

	experiments can be done)
13	To Extract the Natural Dye from Beetroot and Fabric Dyeing using the extract. (Two Day experiment i.e. eight hours)
14	Synthesis of chalcone using mortar and pestle as green method.
15	Preparation of Biodiesel from Waste Cooking Oil.

The students are expected to learn conventional methods for the given experiment and compare it with green procedures. At least twelve experiments to be performed.

Reference Book:

- **1.** Basics and properties of deep eutectic solvents: a review Published: 20 April 2021, Volume 19, pages 3397–3408, (2021)
- **2.** A mini review on synthesis, properties and applications of deep eutectic solvents, Journal of the Indian Chemical Society Volume 98, Issue 11, November 2021, 100210.
- **3.** Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chem. Rev. 2021, 121, 3, 1232–1285.

Course Code		SKILL ENHANCEMENT COURSE	Credits	Lectures/ Week	
K23USCHESC251		Paper I FOOD CHEMISTRY-II	2	2	
Cour	se Outcomes:	•			
CO1	Recollect vari	ous adulterants used in milk			
CO2	Understand - in milk	different methods used for detection of adu	lterants a	nd contents	
CO3	Determine ad	ulterants and properties of milk.			
CO4	Analyse senso	ry properties and fat content of milk.			
Exp	t	Topics			
1		eration Detection in milk by calculating the sy around 1.032) and comparing it with the sar	_	vity of pure	
2	To detect ur	ea adulteration in milk samples and comparin	g it with pu	are milk.	
3	To detect Ar	nmonium sulfate in the milk sample as adulte	rant.		
4	To determin	e the presence of Nitrates in milk samples.			
5	To detect St	arch adulteration in milk samples and compar	ing it with	pure milk.	
6	To detect su	gar adulteration in milk samples and compari	ng it with p	oure milk.	
7	To detect Hy	drogen peroxide in the milk sample as adulter	ant.		
8	To detect Fo	rmalin in the milk sample as adulterant.			
9	To determin	To determine the presence of Nitrates in the milk samples.			
10		To determine the presence of organic acids like benzoic acid and salicylic acid in the milk samples.			
11	To detect Bo	orax and Boric acid in the milk sample as adul	terants.		
12	To detect th	e presence of Detergent in milk samples.			
13	To detect pu	llverized Soap in the milk sample as adulteran	ts.		

14	To detect the coloring matter in milk samples.
15	To detect Alkali adulterants in the milk sample.
16	To determine Fat Content of milk.
17	To analyze the Protein Content of milk samples.
18	To perform the Sensory Evaluation of milk samples.

At least twelve experiments to be performed. Students are expected to know common adulterants in milk and simple techniques to detect such adulterations.

Reference Books:

- 1. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.
- 2. R. M. Felder, R. W. Rousseau: *Elementary Principles of Chemical Processes*, Wiley Publishers, New Delhi.
- 3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: *Introduction to Ceramics*, Wiley Publishers, New Delhi.
- 4. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi.
- 5. P. C. Jain & M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.
- 6. R. Gopalan, D. Venkappayya, S. Nagarajan: *Engineering Chemistry*, Vikas Publications, New Delhi.
- 7. B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut

Course Code	SEM I Chemistry Practicals	Credits	Lectures /Week
KUSCHEM23P1	Practical 1	2	4

Cours	se Outcomes:			
After	After successful completion of this course, students would be able to			
CO1	Various ways in which concentration is expressed and functional groups of organic compounds			
CO2	How to prepare standard solutions and procedure to find out the functional groups of organic compounds			
CO3	Determination of the concentration and identification of organic compounds			
CO4	Estimate the concentration of various elements and find out the organic compounds`			
1	To prepare 0.1N succinic acid solution and standardize the supplied NaOH solution volumetrically.			
2	To prepare 0.1N oxalic acid solution and standardize the supplied NaOH solution volumetrically.			
3	To determine the percentage purity of samples of BaSO4 containing NH4Cl gravimetrically.			
4	Chemical kinetics: To determine the rate constant K, of the reaction, hydrolysis of methyl acetate by using 1st order rate equation.			
5	Chemical kinetics: To determine the rate constant K, of the reaction between KI and K2Cr2O7 in acidic medium using second order rate equation.			
6	To determine the percentage purity of a sample of ZnO containing ZnCO3 gravimetrically.			
7	To crystallize the given organic compound and find the weight and purity of crystals by melting point.(minimum three)			
8	To prepare p-nitroacetanilide from acetanilide (nitration)			
9	To prepare p-nitroaniline from p-nitroacetanilide (hydrolysis)			
10	To prepare solutions of different concentrations by using a given standard solution.			
11	To Determine the strength of a commercial sample of hydrochloric acid by titrimetry.			

To Determine the strength of commercial sample of acetic acid - by titrimetric method

References

12

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York

Course Code	SEM II - Chemistry Practicals	Credits	Lectures/ Week

KUSSCHE M23P2		Practical 2	2	4	
	Course Outcomes: After successful completion of this course, students would be able to				
CO1	Enthalpy of a salt, cr	Enthalpy of a salt, crystallization,pH of a buffer solution			
CO2	Enthalpy change , strength of a acid ,preparation of derivatives ,cations and anions in a qualitative mixture)				
CO3	Determination of Enthalpy of salt ,crystallize a compound ,Preparation of derivatives of organic compounds				
CO4	Weight and purity of organic compounds , analyze the positive and negative ions in a salt				
1	To determine enthalpy of dissolution of salt (like KNO3)				
2	To study change in strength of acid solution by pH-metry				
3	Semi-micro inorganic qualitative analysis of a sample containing two cations and two anions.(minimum five mixtures)				
4	Calculate the enthalpy change in the given reaction.(Dry experiment)				
5	(minimum six composed Benzoic acid, *Salicy	organic compound containing C,H,(O ounds) lic acid, * β-naphthol, * p-nitroanilin s six experiments are expected)			

Evaluation Scheme for First Year (UG) under NEP (2 credits)

I. Internal Evaluation for Theory Courses - 20 Marks

- 1) Continuous Internal Assessment(CIA) Assignment Tutorial/ Case Study/ Project / Presentations/ Group Discussion / Ind. Visit. 10 marks
- 2) Continuous Internal Assessment(CIA) ONLINE Unit Test 10 marks

II. External Examination for Theory Courses - 30 Marks

Duration: 1 Hours

Theory question paper pattern: All questions are compulsory.

Question	Based on	Marks
Q.1	Unit I	10
Q2	Unit-II	10
Q.3	Unit II	10

- All questions shall be compulsory with internal choice within the questions.
- Each Question may be sub-divided into sub questions as a, b, c, d, etc. & the allocation of Marks depends on the weightage of the topic.

III. Practical Examination

- Each core subject carries 50 Marks.
- Duration: 2 Hours for each practical course.
- Minimum 80% practical from each core subjects are required to be completed.
- Certified Journal is compulsory for appearing at the time of Practical Exam

NOTE: To pass the examination, attendance is compulsory in both Internal & External (Theory + Practical) Examinations