AC 20.08.22 ITEM NO: 1.1.3

Deccan Education Society's

Kirti M. Doongursee College of Arts, Science and Commerce (AUTONOMOUS)

Affiliated to UNIVERSITY OF MUMBAI

Syllabus for Program: Master of Science Course: M.Sc. Subject: Computer Science with Specialization Data Science

> Choice Based Credit System (CBCS) with effect from Academic Year 2022-2023

PROGRAMME OUTCOME

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M.Sc. Data Science programme, students will be able:

PO_01: To become a skilled Data Scientist in industry, academia, or government. PO_02: To use specialised software tools for data storage, analysis and visualization.

PO_03: To independently carry out research/investigation to solve practical problems.

PO_04: To gain problem-solving ability- to assess social issues (ethical, financial, management, analytical and scientific analysis) and engineering problems.

PO_05: To have a clear understanding of professional and ethical responsibility. PO_06: To collaborate virtually.

PO_07: To have critical thinking and innovative skills.

PO_08: To translate vast data into abstract concepts and to understand database reasoning.

PROGRAMME STRUCTURE

Semester – I			
Course Code	Course Title	Credits	
KPSDS22101	Programming Paradigms	4	
KPSDS22102	Database Technologies	4	
KPSDS22103	Fundamentals of Data	4	
	Science		
KPSDS22104	Statistical Methods for Data	4	
	Science		
KPSDS221P1	Programming Paradigms	2	
	Practical		
KPSDS221P2	Database Technologies	2	
	Practical		
KPSDS221P3	Fundamentals of Data	2	
	Science Practical		
KPSDS221P4	Statistical Methods for Data	2	
	Science Practical		
	Total Credits	24	

Semester – II			
Course Code	Course Title	Credits	
KPSDS22201	Artificial Intelligence and	4	
	Machine Learning		
KPSDS22202	Soft Computing	4	
KPSDS22203	Algorithms for Data Science	4	
KPSDS22204	Optimization Techniques	4	
KPSDS222P1	Artificial Intelligence and	2	
	Machine Learning Practical		
KPSDS222P2	Soft Computing Practical	2	
KPSDS222P3	Algorithms for Data Science	2	
	Practical		
KPSDS222P4	Optimization Techniques	2	
	Practical		
	Total Credits	24	

DETAILED SYLLABUS FOR SEMESTER - I & SEMESTER - II

Semester – 1

Programming Paradigms

M.Sc (Data Science)		Semester – I	
Course Name: Programming Paradigms		Course Code:	
		KPSDS2	2101
Periods per week (1 Period is	s 60 minutes)	4	
Credits		4	
		Hours	Marks
Evaluation System	Theory Examination	21/2	60
	Internal		40

Course Objectives:

- To understand the basic building blocks of programming Languages.
- To Learn and apply object oriented paradigms.
- To Learn and understand functional programming paradigms.
- To Learn and understand logical programming paradigms.
- To Learn and understand scripting programming paradigms.

Learning Outcomes:

After successful completion of this course, students would be able to

• To independently carry out research/investigation to solve practical problems through various programming languages.

Unit	Details	Lectures
I	Foundations-Language design, why to study programming language, compilation and interpretation, programming environments. Programming language syntax – Specifying syntax: regular expressions and Context-Free grammar(Token and Regular expressions, Context Free grammar, Derivations and parse trees), Scanning(Generating Finite automation, Scanner code, Table-driven scanning,	12

12
10
14
12
12

Books	Books and References:				
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1.	Programming	Michael	Morgan	4th	2015
	Language	Scott	Kaufmann	Edition	
	Pragmatics				
2.	The Craft of	Thompson,	Addison-	2^{nd}	2011
	Functional	Simon.	Wesley	Editon	
	Programming	Haskell:	Professional		
3.	"Foundations of	RoostaSeyed	Cenage	3 rd Editon	2003
	Programming		learning		
	Languages Design				
	& Implementation"				
4.	Programming	Sethi Ravi	Pearson	3 rd Editon	2000
	Languages:		Education		
	Concepts and				
	Constructs				

Programming Paradigms Practical

M. Sc. (Data Science)	Semester – I		
Course Name: Programmin	ng Paradigms	Course Code:	
Practical		KPSDS2	21P1
Periods per week (1 Period is	s 60 minutes)	4	
Credits		2	
		Hours	Marks
Evaluation System Practical		2	50
Examination			
	Internal		

Practical:

Perform minimum ten practical based on the basic concepts of each programming paradigm covering the entire syllabus.

Course Outcomes:

- To explore a range of modern programming languages and programming techniques.
- To select appropriate software development tools for given application environments.

Database Technologies

M.Sc (Data Science)	Semester – I		
Course Name: Database Technologies		Course Code:	
		KPSDS22102	
Periods per week (1 Period is	s 60 minutes)	4	
Credits		4	
		Hours	Marks
Evaluation System	Theory Examination	$2^{1/2}$	60
	Internal		40

Course Objectives:

• The objective of the course is to present an introduction to database management systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from a DBMS.

Learning Outcomes:

After successful completion of this course, students would be able to

• Students will develop the ability to build and assess Databased models.

Unit	Details	Lecture
		S
Ι	Database Concepts: Why Databases?, Data versus Information, Introducing the Database, Why Database Design Is Important, Evolution of File System Data Processing, Problems with File System Data Processing, Database Systems Data Models:Data Modeling and Data Models, The Importance of Data Models, Data Model Basic Building Blocks, Business Rules, The Evolution of Data Models, Degrees of Data Abstraction The Relational Database Model:A Logical View of Data, Keys, Integrity Rules, Relational Algebra, The Data Dictionary and the System Catalog, Relationships within the Relational Database, Data Redundancy Revisited Entity Relationship (ER) Modeling: The Entity Relationship Model, Developing an ER Diagram, Database Design Challenges: Conflicting Goals	12
II	Advanced Data Modelling:The Extended Entity Relationship Model, Entity Clustering, Design Cases: Learning Flexible Database Design	12

	Normalization of Database Tables:Database Tables and Normalization, The Need for Normalization, The Normalization Process, Improving the Design Introduction to Structured Query Language (SQL):Introduction to SQL, Basic SELECT Queries, SELECT Statement Options, FROM Clause Options, ORDER BY Clause Options, WHERE Clause Options, Aggregate Processing, Subqueries, SQL Functions, Relational Set Operators, Crafting SELECT Queries Advanced SQL:Data Definition Commands, Creating Table Structures, Altering Table Structures, Data Manipulation Commands, Virtual Tables: Creating a View, Sequences, Procedural SQL, Embedded SQL Transaction Management and Concurrency Control:What Is a Transaction?, Concurrency Control, Concurrency Control with Locking Methods, Concurrency Control with Time Stamping Methods, Concurrency Control with Optimistic Methods, ANSI Levels of Transaction Isolation, Database Recovery Management
12	 III Three Database Revolutions: Early Database Systems, The First Database Revolution, The Second Database Revolution, The Third Database Revolution Google, Big Data, and Hadoop: The Big Data Revolution, Google: Pioneer of Big Data, Hadoop: Open-Source Google Stack Sharding, Amazon, and the Birth of NoSQL: Scaling Web 2.0, Amazon's Dynamo Document Databases: XML and XML Databases, JSON Document Databases
12	 IV Tables are Not Your Friends: Graph Databases: What is a Graph?, RDBMS Patterns for Graphs, RDF and SPARQL, Property Graphs and Neo4j, Gremlin, Graph Database Internals, Graph Compute Engines Column Databases: Data Warehousing Schemas, The Columnar Alternative, Sybase IQ, C-Store, and Vertica, Column Database Architectures The End of Disk? SSD and In-Memory Databases: The End of Disk?, In-Memory Databases, Berkeley Analytics Data Stack and Spark Distributed Database Patterns: Distributed Relational Databases, Nonrelational Distributed Databases, MongoDB Sharding and Replication, HBase, Cassandra

	Consistency Models: Types of Consistency, Consistency in MongoDB, HBase Consistency, Cassandra Consistency	
V	Data Models and Storage: Data Models, Storage Languages and Programming Interfaces: SQL, NoSQL APIs, The Return of SQL Databases of the Future: The Revolution Revisited, Counterrevolutionaries, Can We have it All?, Meanwhile, Back at Oracle HQ, Other Convergent Databases, Disruptive Database Technologies	12

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Database System	Carlos	Cengage	13th	2018
	designs,	Coronel,			
	Implementation &	Steven			
	Management	Morris			
2	Next Generation	Guy Harrison	Apress	1st	2015
	Databases				
3	Advanced Database	Mario	Artech	1st	2000
	Technology and	Piattini,	House		
	Design	Oscar Díaz			

Database Technologies Practical

M. Sc. (Data Science)	Semester – I		
Course Name: Database Tee	Course (Course Code:	
	KPSDS221P2		
Periods per week (1 Period is	4		
Credits	2		
		Hours	Marks
Evaluation System	Practical	2	50
	Examination		
	Internal		

Practical:

Perform minimum ten practical based on the basic concepts of each Database Technologies covering the entire syllabus.

Course Outcomes:

Upon successful completion of this course, students should be able to:

- Describe the fundamental elements of relational database management systems
- Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL
- Design ER-models to represent simple database application scenarios
- Convert the ER-model to relational tables, populate relational database and formulate SQL queries on data.
- Improve the database design by normalization.

M.Sc (Data Science)	Semester – I			
Course Name: Fundamenta	Course Code:			
			KPSDS22103	
Periods per week (1 Period is 60 minutes) 4			4	
Credits 4		4		
	Hours	Marks		
Evaluation System	Theory Examination	$2\frac{1}{2}$	60	
	Internal		40	

Course Objectives:

• To provide strong foundation for data science and application in area related to it and understand the underlying core concepts and emerging technologies in data science.

Learning Outcomes:

After successful completion of this course, students would be able to

• To use specialized software tools for data storage, analysis and visualization for data science

Unit	Details	Lectures
Ι	Introduction to Data Science:	
	• What is Data? Kinds of data: e.g. static, spatial, temporal, text, media,	
	 Introduction to high level programming language + Integrated Development 	
	 Environment (IDE) Describing data: Exploratory Data Analysis (EDA) + Data Visualization - Summaries, aggregation, smoothing, distributions 	12
	 Data sources: e.g. relational databases, web/API, streaming, 	
	Data collection: e.g. sampling, design (observational vs experimental) and its impact on visualization, modeling and generalizability of results	
II	Data analysis/modeling:	
	• Question/problem formation and inference (testing	10
	and confidence intervals) including simulation	14
	and resampling	

	 Scope of inference Assessment and selection e.g. training and testing sets 	
	 Data Curation, Management and Organization-I Query languages and operations to specify and transform data (e.g. projection, selection, join, aggregate/group, summarize) Structured/schema based systems as users and acquirers of data Relational (SQL) databases, APIs and programmatic access, indexing XML and XPath, APIs for accessing and querying structured data contained therein 	
	Data Curation, Management and Organization-I	
	 Semi-structured systems as users and acquirers of data Access through APIs yielding JSON to be parsed and structured Unstructured systems in the acquisition and structuring of data Web Scraping Text/string parsing/processing to give structure Data Curation, Management and Organization-II Security and ethical considerations in relation to authenticating and authorizing access to data on remote systems Software development tools (e.g. github, version control) 	12
IV	 Data Curation, Management and Organization-II Large scale data systems Paradigms for distributed data storage Practical access to example systems (e.g. MongoDB, HBase, NoSQL systems) 	12

	 Amazon Web Services (AWS) provides public data sets in Landsat, genomics, multimedia Introduction to Statistical Models Simple Linear Regression Multiple Linear Regression Logistic Regression Review of hypothesis testing, confidence intervals, etc. Estimation e.g. likelihood principle, Bayes, 	
V	 Introduction to Statistical Models Linear models Regression theory i.e. least-squares: Introduction to estimation principles Multiple regression Transformations, model selection Interactions, indicator variables, ANOVA Generalized linear models e.g. logistic, etc. Alternatives to classical regression e.g. trees, smoothing/splines Introduction to model selection Regularization, bias/variance tradeoff e.g. parsimony, AIC, BIC Cross validation 	12

Books and References:					
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1	Hands-On	Garrett	O'Reilly	1st	2014
	Programming with R	Grolemund			
2	Doing Data Science	Rachel	O'Reilly	1st	2013
		Schutt,	Media		
		Cathy O'Neil			

3	An Introduction to	Gareth	Springer	2 nd	2021
	Statistical Learning	James,	US		
	with Applications in R	Daniela			
		Witten,			
		Trevor			
		Hastie,			
		Robert			
		Tibshirani:			
4	Applied Predictive	M. Kuhn, K.	Springer	3 rd	2019
	Modelling	Johnson	New York		
5	Mastering Machine	Cory	Packt	2 nd	2015
	Learning with R	Lesmeister	Publishing		

Fundamentals of Data Science Practical

M. Sc (Data Science)			r – I	
Course Name: Fundamentals of Data Science			Course Code:	
Practical	KPSDS2	21P3		
Periods per week	Lectures	4		
1 Period is 60 minutes				
	Credits		2	
		Hours	Marks	
Evaluation System	Practical	2	50	
_	Examination			

Practical:

Perform minimum ten practical based on the basic concepts of each unit of Fundamentals of Data Science Practical covering the entire syllabus.

Course Outcomes:

- The students will be able to independently carry out research/investigation to solve practical problems
- The students should be able to understand & comprehend the problem; and should be able to define suitable statistical method to be adopted.

Statistical Methods for Data Science

M. Sc (Data Science)			Semester – I	
Course Name: Statistical M	Course			
Science	Code:KP	SDS22104		
Periods per week	Lectures	4		
1 Period is 60 minutes				
С		4		
		Hours	Marks	
Evaluation System	Theory Examination	$2^{1/2}$	60	
	Theory Internal		40	

Pre requisites :

• Knowledge of statistics and mathematical concepts

Course Objectives:

- To present the mathematical, statistical and computational challenges of building neural networks
- To study the concepts of deep learning
- To enable the students to know deep learning techniques to support realtime applications

Unit	Details	Lectures
Ι	Introduction to Applied Statistics: The Nature of Statistics and Inference, What is "Big Data"?, Statistical Modelling, Statistical Significance Testing and Error Rates, Simple Example of Inference Using a Coin,Statistics Is for Messy Situations, Type I versus Type II Errors, Point Estimates and Confidence Intervals, Variable Types, Sample Size, Statistical Power, and Statistical Significance, The Verdict on Significance Testing, Training versus Test Data.	12
II	Computational Statistics:Vectors and Matrices, The Inverse of a Matrix, Eigenvalues and Eigenvectors Means, Correlations, Counts: Drawing Inferences: Computing z and Related Scores, Statistical Tests, Plotting Normal Distributions, Correlation Coefficients, Evaluating Pearson's r for Statistical Significance, Spearman's Rho: A Nonparametric Alternative to Pearson, Tests of Mean Differences, t-Tests for One Sample, Two-Sample t-Test, Paired-Samples t-Test, Categorical Data, Binomial Test, Categorical Data Having More Than Two Possibilities.	12
III	Power Analysis and Sample Size Estimation:Power for t- Tests, Power for One-Way ANOVA, Power for Correlations. Analysis of Variance: Fixed Effects, Random Effects, Mixed Models, Introducing the Analysis of Variance (ANOVA), Performing the ANOVA, Random Effects ANOVA and Mixed Models, One-Way Random Effects ANOVA, Simple and Multiple Linear Regression,Simple Linear Regression, Multiple Regression Analysis, Hierarchical Regression, How Forward Regression Works,	12
IV	Logistic Regression and the Generalized Linear Model:Logistic Regression, Logistic Regression, Predicting	12

	 Probabilities, Multiple Logistic Regression, Training Error Rate Versus Test Error Rate. Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis:Multivariate Tests of Significance, Example of MANOVA, Outliers, Homogeneity of Covariance Matrices, Linear Discriminant Function Analysis, Theory of Discriminant Analysis, Predicting Group Membership, Visualizing Separation 	
V	Principal Component Analysis: Principal Component Analysis Versus Factor Analysis, Properties of Principal Components, Component Scores, How Many Components to Keep?, Exploratory Factor Analysis, Common Factor Analysis Model, Factor Analysis Versus Principal Component Analysis on the Same, Initial Eigenvalues in Factor Analysis, Rotation in Exploratory Factor Analysis, Estimation in Factor Analysis Cluster Analysis:k-Means Cluster Analysis, Minimizing Criteria, Example of k-Means Clustering, Hierarchical Cluster Analysis, Why Clustering Is Inherently Subjective, Nonparametric Tests, Mann–Whitney U Test, Kruskal– Wallis Test, Nonparametric Test for Paired Comparisons and Repeated	12

,						
Bool	Books and References:					
Sr.	Title	Author/s	Publisher	Edition	Year	
No.						
01	Univariate, Bivariate, and Multivariate Statistics Using R	Daniel J. Denis	Wiley	1st	2020	
02	Practical Data Science	Andreas François Vermeulen	APress	1st	2018	
03	Data Science from Scratch first Principle in python	Joel Grus	Shroff Publishers	1st	2017	
04	Experimental Design in Data science with Least Resources	N C Das	Shroff Publishers	1st	2018	

Statistical Methods for Data Science Practical

M. Sc (Data Science)			r – I
Course Name: Statistical Me	ethods for Data	Course (Code:
Science Practical	KPSDS2	21P4	
Periods per week	Lectures	4	
1 Period is 60 minutes			
Credits		2	
		Hours	Marks
Evaluation System	Practical	2	40
	Examination		

Practical:

Perform minimum ten practical based on the basic concepts of each Statistical Methods for Data Science covering the entire syllabus.

Course Outcomes:

At the end of successful completion of the course the student will be able to:

- Describe basics of mathematical foundation that will help the learner to understand the concepts of Deep Learning.
- Understand and describe model of deep learning
- Design and implement various deep supervised learning architectures for text & image data.
- Design and implement various deep learning models and architectures.
- Apply various deep learning techniques to design efficient algorithms for real-world applications.

SEMESTER-II

Artificial Intelligence and Machine Learning

M. Sc (Data Science)			r – II
Course Name: Artificial Int	Course Code:		
Machine Learning	KPSDS2	2201	
Periods per week Lectures		4	
1 Period is 60 minutes			
Credits		4	
		Hours	Marks
Evaluation System	Theory Examination	$2^{1/2}$	60
	Theory Internal		40

Pre requisites :

• Knowledge of Algorithms and mathematical foundation

Course Objectives:

- To provide the foundations for AI problem-solving techniques and knowledge representation formalisms
- Understanding Human learning aspects.
- Understanding primitives in learning process by computer.
- Understanding nature of problems solved with Machine Learning

Unit	Details	Lectures
Ι	Introduction to AI:	12
	The AI problems, AI technique, philosophy and development of	
	Af uncial intelligence.	
	Constraint- satisfaction problems.	
	Knowledge and Reasoning: Logical agents, Propositional logic,	
	First-order logic, Inference in FoL: forward chaining, backward	
	chaining, resolution, Knowledge representation: Frames,	
	Ontologies, Semantic web and RDF.	
II	Introduction to PROLOG: Facts and predicates, data types, goal	12
	finding, backtracking, simple object, compound objects, use of	
	cut and fail predicates, recursion, lists, simple input/output,	
	dynamic database.	
	Machine Learning: Machine learning, Examples of Machine	
	Learning Problems, Structure of Learning, learning versus	
	Designing, Training versus Testing, Characteristics of Machine	

	learning tasks, Predictive and descriptive tasks, Machine learning Models: Geometric Models, Logical Models, Probabilistic Models. Features: Feature types, Feature Construction and Transformation, Feature Selection	
III	Classification and Regression: Classification: Binary Classification- Assessing Classification performance, Class probability Estimation Assessing class probability Estimates, Multiclass Classification. Regression: Assessing performance of Regression- Error measures, Overfitting- Catalysts for Overfitting, Case study of Polynomial Regression. Theory of Generalization: Effective number of hypothesis, Bounding the Growth function, VC Dimensions, Regularization theory.	12
IV	Linear Models: Least Squares method, Multivariate Linear Regression, Regularized Regression, Using Least Square regression for Classification. Perceptron, Support Vector Machines, Soft Margin SVM, Obtaining probabilities from Linear classifiers, Kernel methods for non-Linearity. Logic Based and Algebraic Model: Distance Based Models:Neighbours and Examples, Nearest Neighbours Classification, Distance based clustering-K means Algorithm, Hierarchical clustering,	12
V	Rule Based Models: Rule learning for subgroup discovery, Association rule mining. Tree Based Models: Decision Trees, Ranking and Probability estimation Trees, Regression trees, Clustering Trees. Probabilistic Model: Normal Distribution and Its Geometric Interpretations, Naïve Bayes Classifier, Discriminative learning with Maximum likelihood, Probabilistic Models with Hidden variables: Estimation-Maximization Methods, Gaussian Mixtures, and Compression based Models.	12

,					
Books	and References:				
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
01	Artificial Intelligence	Elaine Rich,	Tata	3rd	2017
		Kevin Knight	McGraw		
			Hill		
02	Machine Learning:	Peter Flach	Cambridge	1 st	2012
	The Art and Science		University		
	of Algorithms that		Press		
	Make Sense of Data				

03	Introduction to	Hastie,	Springer	2nd	2012
	Statistical Machine	Tibshirani,			
	Learning with	Friedman			
	Applications in R				
04	Introduction to	EthemAlpaydin	PHI	2nd	2013
	Machine Learning				

Artificial Intelligence and Machine Learning Practical

M. Sc (Data Science)			Semester – II	
Course Name:Artificial Intell	ligence and Machine	Course (Code:	
Learning Practical		KPSDS2	22P1	
Periods per week (1 Period is	4			
Credits		2		
			Marks	
Evaluation System	Practical	2	50	
Examination				
	Internal		-	

Practical:

Perform minimum ten practical based on the basic concepts of each Artificial Intelligence and Machine Learning covering the entire syllabus.

Course Outcomes:

- Understand the key issues and concepts in Artificial Intelligence.
- Acquire the knowledge about classification and regression techniques where a learner will be able to explore his skill to generate data base knowledge using the prescribed techniques.
- Understand and implement the techniques for extracting the knowledge using machine learning methods.
- Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.
- Understand the statistical approach related to machine learning.He will also apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the mode

Soft Computing

M. Sc (Data Science)	Semester – II		
Course Name: Soft Computing		Course	
			SDS22202
Periods per week	Lectures	4	
1 Period is 60 minutes			
Credits		4	
		Hours	Marks
Evaluation System	Theory Examination	$2^{1/2}$	60
	Theory Internal		40

Course Objectives:

- Soft computing concepts like fuzzy logic, neural networks and genetic algorithm, where Artificial Intelligence is mother branch of all.
- All these techniques will be more effective to solve the problem efficiently

Unit	Details	Lectures
Ι	Artificial Neural Network:Fundamental concepts,Evolution of neural network, basic model of Artificial Neural Network, Important terminologies, McCulloch Pits neuron, linear separability, Hebb network Supervised Learning Network: Perceptron networks, Adaline, MAdaline, Backpropogation network, Radial Basis Function, Time Delay Network, Functional Link Networks, Tree Neural Network.	12
II	UnSupervised Learning Networks: Fixed weight competitive nets, Kohonen self-organizing feature maps, learning vectors quantization, counter propogation networks, adaptive resonance theory networks. Associative Memory Networks: Training algorithm for pattern Association, Autoassociative memory network, hetroassociative memory network, bi-directional associative memory, Hopfield networks, iterative autoassociative memory networks, temporal associative memory networks.	12

III	Special Networks: Simulated annealing, Boltzman machine, Gaussian Machine, Cauchy Machine, Probabilistic neural net, cascade correlation network, cognition network, neo-cognition network, cellular neural network, optical neural network Third Generation Neural Networks: Spiking Neural networks, convolutional neural networks, deep learning neural networks, extreme learning machine model.	12
IV	Introduction to Fuzzy Logic, Classical sets, Fuzzy sets, Classical Relations and Fuzzy Relations: Cartesian Product of relation, classical relation, fuzzy relations, tolerance and equivalence relations, non- iterative fuzzy sets. Membership Function: features of the membership functions, fuzzification and methods of membership value assignments. Defuzzification: Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy relations, Defuzzification methods. Fuzzy Arithmetic and Fuzzy measures: fuzzy arithmetic, fuzzy measures, measures of fuzziness, fuzzy integrals.	12
V	Genetic Algorithm: Biological Background, Traditional optimization and search techniques, genetic algorithm and search space, genetic algorithm vs. traditional algorithms, basic terminologies, simple genetic algorithm, general genetic algorithm, operators in genetic algorithm, stopping condition for genetic algorithm flow, constraints in genetic algorithm, problem solving using genetic algorithm, the schema theorem, classification of genetic algorithm, Holland classifier systems, genetic programming, advantages and limitations and applications of genetic algorithm	12

Books and References:					
Sr.	Title	Author/s	Publisher	Editio	Year
No.				n	
1.	Artificial Intelligence	Anandita Das	SPD	3rd	201
	and Soft Computing	Battacharya			8
2.	Principles of Soft	S.N.Sivanand	Wiley	3 rd	201
	computing	am			9
		S.N.Deepa			

3.	Neuro-Fuzzy and Soft	J.S.R.Jang,	Prentice	1 st	200
	Computing	C.T.Sun and	Hall of		4
		E.Mizutani	India		
4.	Neural Networks,	S.Rajasekara	Prentice	1 st	200
	Fuzzy Logic and	n, G. A.	Hall of		4
	Genetic Algorithms:	Vijayalaksha	India		
	Synthesis &	mi			
	Applications				
5.	Fuzzy Logic with	Timothy	McGraw-	1 st	199
	Engineering	J.Ross	Hill		7
	Applications				
6.	Genetic Algorithms:	Davis	Addison	1 st	198
	Search, Optimization	E.Goldberg	Wesley		9
	and Machine Learning				
7.	Introduction to AI and	Dan W.	Prentice	2 nd	
	Expert System	Patterson	Hall of		200
			India		9

Soft Computing Practical

M. Sc (Data Science)	Semester – II		
Course Name:Soft Computir	Course		
		Code:KP	SDS222P2
Periods per week (1 Period is	s 60 minutes)	4	
Credits	2		
	Hours	Marks	
Evaluation System	Practical	2	50
_	Examination		
	Internal		-

Practical:

Perform minimum ten practical based on the basic concepts of each soft computing covering the entire syllabus.

Course Outcome:

- Identify and describe soft computing techniques and their roles in building intelligent machines
- Recognize the feasibility of applying a soft computing methodology for a particular problem

- Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems and also Apply neural networks for classification and regression problems
- Apply genetic algorithms to combinatorial optimization problems
- Evaluate and compare solutions by various soft computing approaches for a given problem.

Algorithms for Data Science

M. Sc (Data Science)	Semeste	r – II		
Course Name: Algorithms for Data Science		Course Code:		
			KPSDS22203	
Periods per week (1 Period is 60 minutes)		4		
Credits 4		4		
		Hours	Marks	
Evaluation System	Theory Examination	$2^{1/2}$	60	
	Internal		40	

Course Objectives:

The course is aimed at:

- Focussing on the principles of data reduction and core algorithms for analysing the data of data science
- Providing many opportunities to develop and improve programming skills
- Applying algorithms to real world data set
- Imparting design thinking capability to build big-data

Unit	Details	Lectures
I	Introduction: What Is Data Science?, Diabetes in America, Authors of the Federalist Papers, Forecasting NASDAQ Stock Prices, Algorithms, Python, R, Terminology and Notation Data Mapping and Data Dictionaries: Data Reduction, Political Contributions, Dictionaries, Tutorial: Big Contributors, Data Reduction, Election Cycle Contributions, Similarity Measures, Computing Similarity Scalable Algorithms and Associative Statistics: Introduction, Associative Statistics, Univariate Observations, Functions, Histogram Construction, Multivariate Data, Computing the Correlation Matrix, Linear Regression, Computing β	12
II	Hadoop and MapReduce: Introduction, The Hadoop Ecosystem, Medicare Payments, The Command Line Environment, Programming a MapReduce Algorithm, Using Amazon Web Services Data Visualization: Introduction, Principles of Data Visualization, Making Good Choices, Harnessing the Machine	12
III	Linear Regression Methods: Introduction, The Linear Regression Model, Introduction to R, Large Data Sets and R, Factors, Analysis of Residuals	12

	Healthcare Analytics: Introduction, The Behavioral Risk Factor Surveillance System, Diabetes Prevalence and Incidence, Predicting At-Risk Individuals, Identifying At-Risk Individuals, Unusual Demographic Attribute Vectors, Building Neighborhood Sets	
IV	Cluster Analysis: Introduction, Hierarchical Agglomerative Clustering, Comparison of States, Hierarchical Clustering of States, The k-Means Algorithm k-Nearest Neighbor Prediction Functions: Introduction, Notation and Terminology, Distance Metrics, The k-Nearest Neighbor Prediction Function, Exponentially Weighted k- Nearest Neighbors, Digit Recognition, Accuracy Assessment, k-Nearest Neighbor Regression, Forecasting the S&P 500, Forecasting by Pattern Recognition, Cross-Validation The Multinomial Naïve Bayes Prediction Function: Introduction, The Federalist Papers, The Multinomial Naïve Bayes Prediction Function, Reducing the Federalist Papers, Predicting Authorship of the Disputed Federalist Papers, Customer Segmentation	12
V	Forecasting: Introduction, Working with Time, Analytical Methods, Computing ρt , Drift and Forecasting, Holt-Winters Exponential Forecasting, Regression-Based Forecasting of Stock Prices, Time-Varying Regression Estimators Real-time Analytics: Introduction, Forecasting with a NASDAQ Quotation Stream, Forecasting the Apple Inc. Stream, The Twitter Streaming API, Sentiment Analysis, Sentiment Analysis of Hashtag Groups	12

Books	Books and References:				
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1	Algorithms for	Brian Steele,	Springer	1 st	2016
	Data Science	John			
		Chandler,Swarna			
		Reddy			
2	Data Science Algorithms in a Week	David Natingga	Packt Publishing	1st	2017
3	Data Science: Theories, models, Algorithms and Analytics	SanjivRanjan Das	S.R. Das	1 st	2017

Algorithms for Data Science Practical

M. Sc (Data Science)	Semester II		
Course Name: Algorithms fo	Course Code:		
Practical		KPSDS2	22P3
Periods per week (1 Period is	4		
Credits	2		
	Hours	Marks	
Evaluation System Practical		2	50
Examination			
	Internal		

Practical:

Perform minimum ten practical based on the basic concepts of each algorithm for data science covering the entire syllabus.

Course Outcomes:

At the end of the course the student should be able to:

- Understand fundamentals of data science
- Apply data visualisation in big-data analytics
- Apply Hadoop and map-reduce algorithm to big data
- Apply different algorithms to data sets
- Perform real-time analytics

Optimization Techniques

M. Sc (Data Science)	Semeste	r – II		
Course Name: Optimization Techniques		Course Code:		
			KPSDS22204	
Periods per week (1 Period is 60 minutes)		4		
Credits	edits 4		4	
		Hours	Marks	
Evaluation System	Theory Examination	$2^{1/2}$	60	
	Internal		40	

Pre requisites :

• Knowledge of Algorithms and mathematical foundation

Course Objectives:

- To familiarize the students with some basic concepts of optimization techniques and approaches.
- To formulate a real-world problem as a mathematical programming model.
- To develop the model formulation and applications are used in solving decision problems.
- To solve specialized linear programming problems like the transportation and assignment problems.

Unit	Details	Lectures
Ι	Mathematical Foundations: Functions and Continuity, Review of Calculus, Vectors, Matrix Algebra, Eigenvalues and Eigenvectors, Optimization and Optimality, General Formulation of Optimization Problems Algorithms, Complexity, and Convexity: What Is an Algorithm?, Order Notations, Convergence Rate, Computational Complexity, Convexity, Stochastic Nature in Algorithms	12
II	Optimization: Unconstrained Optimization, Gradient-Based Methods, Gradient-Free Nelder-MeadMethod Constrained Optimization: Mathematical Formulation, Lagrange Multipliers, Slack Variables, Generalized Reduced GradientMethod, KKT Conditions, PenaltyMethod Optimization Techniques: Approximation Methods: BFGS Method, Trust-Region Method, Sequential Quadratic	12

	Programming, Convex Optimization, Equality Constrained Optimization, Barrier Functions, Interior-PointMethods, Stochastic and Robust Optimization	
III	Linear Programming: Introduction, SimplexMethod, Worked Example by Simplex Method, Interior-PointMethod for LP Integer Programming: Integer Linear Programming, LP Relaxation, Branch and Bound, Mixed Integer Programming, Applications of LP, IP, and MIP Regression and Regularization: SampleMean and Variance, Regression Analysis, Nonlinear Least Squares, Over-fitting and Information Criteria, Regularization and Lasso Method, Logistic Regression, Principal Component Analysis	12
IV	Machine Learning Algorithms: Data Mining, Data Mining for Big Data, Artificial Neural Networks, Support Vector Machines, Deep Learning Queueing Theory and Simulation: Introduction, Arrival Model, Service Model, Basic QueueingModel, Little's Law, Queue Management and Optimization Multiobjective Optimization: Introduction, Pareto Front and Pareto Optimality, Choice and Challenges, Transformation to Single Objective Optimization, The <i>e</i> Constraint Method, Evolutionary Approaches	12
V	Constraint-Handling Techniques: Introduction and Overview, Method of Lagrange Multipliers, Barrier Function Method, PenaltyMethod, Equality Constraints via Tolerance, Feasibility Criteria, Stochastic Ranking, Multiobjective Constraint-Handling and Ranking Evolutionary Algorithms: Evolutionary Computation, Evolutionary Strategy, Genetic Algorithms, Simulated Annealing, Differential Evolution Nature-Inspired Algorithms: Introduction to SI, Ant and Bee Algorithms, Particle Swarm Optimization, Firefly Algorithm, Cuckoo Search, Bat Algorithm, Flower Pollination Algorithm, Other Algorithms	12

Books a	Books and References:				
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1	Optimization	Xin-She	Wiley	3 rd	2018
	Techniques and	Yang			
	Applications				
	with Examples				
2	Optimization	A.K. Malik,	I.K.	1 st	2012
	Techniques	S.K. Yadav,	International		
		S.R. Yadav	Publishing		
			House		
3	Optimization	Marco	Springer	1st	2012
	methods: from	Cavazzuti			
	theory to design				
4	Optimization	Chander	New Age	1st	2009
	Techniques	Mohan,	International		
		Kusum Deep			

Optimization Techniques Practical

M. Sc (Data Science)	Semester II		
Course Name: Optimization	Techniques	Course Code:	
Practical		KPSDS2	22P4
Periods per week (1 Period is	4		
Credits	2		
	Hours	Marks	
Evaluation System	Practical	2	50
Examination			
	Internal		

Practical:

Perform minimum ten practical based on the basic concepts of each optimization technique covering the entire syllabus.

Course Outcomes: Learner will be able to

• Apply operations research techniques like linear programming problem in industrial optimization problems.

- Solve allocation problems using various OR methods.
- Understand the characteristics of different types of decisionmaking environment and theappropriate decision making approaches and tools to be used in each type.
- Recognize competitive forces in the marketplace and develop appropriate reactions based onexisting constraints and resources.

Evaluation Scheme for First Year (PG) under AUTONOMY

I. Internal Evaluation for Theory Courses – 40 Marks

Continuous Internal Assessment 1 (Seminar Presentations) - 40 Marks

II. External Examination for Theory Courses – 60 Marks

Duration: 2 Hours

Theory question paper pattern:

All questions are compulsory.

Question	Based on	Options	Marks
Q.1	Unit I	Any 2 out of 4	12
Q.2	Unit II	Any 2 out of 4	12
Q.3	Unit III	Any 2 out of 4	12
Q.4	Unit IV	Any 2 out of 4	12
Q.5	Unit I, II, III, IV	Any 2 out of 4	12

- All questions shall be compulsory with internal choice within the questions.
- Each Question may be sub-divided into sub questions as a, b, c, d, etc. & the allocation of Marks depends on the weightage of the topic.

III. Practical Examination

• Each core subject carries 50 Marks (30 marks External + 20 marks Internal)

Sr. No.	Postgraduate Practical Internal Evaluation:	Marks
1	Short Experiment/Field Trip/Excursion/Industrial Visit	15
	Report	
2	Journal	5

Sr. No.	Postgraduate Practical External Evaluation:	Marks
1	Experiment/s	25
2	Viva	5

- Duration: 2 Hours for each practical course.
- Minimum 80% practical from each core subjects are required to be completed.
- Certified Journal is compulsory for appearing at the time of Practical Exam