AC 01.09.23 ITEM NO: 26.2

Deccan Education Society's

Kirti M. Doongursee College of Arts, Science and Commerce (AUTONOMOUS)

Affiliated to

UNIVERSITY OF MUMBAI

Syllabus for Program: Masters of Science Course: _MSc Part 1__ Subject: _Zoology__

Choice Based Credit System (CBCS) with effect from Academic Year 2023-2024

PROGRAM OUTCOMES

РО	Description
A	A student completing Master's Degree in Science Program will be able to
PO1	Disciplinary Knowledge:
	Demonstrate comprehensive knowledge of the disciplines that form a part of a graduate Programme. Execute strong theoretical and practical understanding generated from the specific graduate Programme in the area of work.
PO2	Critical Thinking and Problem solving:
	Exhibit the skills of analysis, inference, interpretation and problem- solving by observing the situation closely and design the solutions.
PO3	Social competence:
	Display the understanding, behavioral skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper:
	Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge:
	Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence:
	Performing dependently and collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics:
	Demonstrate empathetic social concern and equity centered national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability:
	Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

Semester	Course Code	Course Title	Verti cal	Credits
I	K23PSZOOMJ111	Non-chordates, chordates and their phylogeny –I	Major	4
	K23PSZOOMJ112	Biochemistry and Metabolism – I	Major	4
	K23PSZOOMJP11	Non-chordates, chordates and their phylogeny I AND Biochemistry and Metabolism – I	Practi cal	4
	K23PSZOOOE131	Tools and Techniques in Biology - I	Electi ve	4
	K23PSZOORM141	Research Methodology	RM	4
I I	K23PSZOOMJ211	Non-chordates, chordates and their phylogeny - II	Major	4
	K23PSZOOMJ212	Biochemistry and Metabolism- II	Major	4
	K23PSZOOMJP21	Non-chordates, chordates and their phylogeny and Biochemistry and Metabolism- II	Practi cal	4
	K23PSZOOOE231	Tools and Techniques in Biology-II	Electi ve	4
			OJT/ FP	4

Course Code	Major SEM – I	Credits	Lectures/Week
K23PSZOOMJ111	Paper I Non-chordates, chordates and their phylogeny –I	4	4

After successful completion of this course, students would be able to

- Knowledge of characteristics of organisms mentioned
- Segregate the role of characteristics in placing the organisms in specific taxonomic classification
- The learner will be well versed with the knowledge of application of characteristics for taxonomic hierarchy
- Analysis of given animal to place them in appropriate taxonomic hierarchy and their roles in evolution
- Critically assess the effectiveness of conservation strategies or management practices for animal populations.

•	Develop	conservation	plans	or	strategies	to	protect	endangered	animal
	species or habitats.								

Unit	Topics	No of Lectures
	Phylogeny, Systematics of non-chordates and assorted topics-I 1.1. Principles of systematic, importance of taxonomic studies in Biology, use of	
	morphometric studies, Osteological studies, use of homologous organs.	
I	1.1. Taxonomic keys: Different kinds of taxonomic keys, their merits and demerits.	15
	1.2. Phylogeny, salient features, classification up to classes (wherever applicable)	
	of the following phyla-	
	1.3.1 Protista (Protozoa)	

1.3.3 Coelenterata 1.3.4 Ctenophora Phylogeny, Systematics of non-chordates, Hemichordata & assorted topics 2.1. Phylogeny, salient features, classification (wherever applicable) up to classes of the following phyla- 2.1.1 Mollusca 2.1.2 Bryozoa 2.1.3 Brachiopoda 2.1.4 Echinodermata 2.1.5 Chaetognatha 2.2 Systematic position and affinities of Hemichordata.	
Phylogeny, Systematics of non-chordates, Hemichordata & assorted topics 2.1. Phylogeny, salient features, classification (wherever applicable) up to classes of the following phyla- 2.1.1 Mollusca 2.1.2 Bryozoa 2.1.3 Brachiopoda 2.1.4 Echinodermata 2.1.5 Chaetognatha 2.2 Systematic position and affinities of Hemichordata	
chordates, Hemichordata & assorted topics2.1. Phylogeny, salient features, classification (wherever applicable) up to classesof the following phyla-2.1.1Mollusca2.1.2 Bryozoa2.1.3 Brachiopoda2.1.4 Echinodermata2.1.5 Chaetognatha2.2 Systematic position and affinities of Hemichordata	
chordates, Hemichordata & assorted topics2.1. Phylogeny, salient features, classification (wherever applicable) up to classesof the following phyla-2.1.1Mollusca2.1.2 Bryozoa2.1.3 Brachiopoda2.1.4 Echinodermata2.1.5 Chaetognatha2.2 Systematic position and affinities of Hemichordata	
 2.3 Assorted Topics: 2.3.1 Economic importance of Protozoa. 2.3.2. Mesenteries in Coelenterata. 2.3.3 Economic importance of Arthropoda. 2.3.4 Sense organs in Arthropoda. 2.3.5 Spines and Pedicellariae in Echinodermata. 2.3.6 Invertebrate larvae- larval forms of free living ninvertebrate larvae and forms of forms of	
free living invertebrates, larval forms of parasites, Strategies and evolutionary significance of larval forms.	

III	 Phylogeny, Systematics of Chordates and Assorted topics- I 3.1. Discovery of Coelacanth. 3.2. Overview of fish phylogeny. 3.3. Primitive tetrapods- Labrynthodonts. 3.4. Crossopterigians- A blue print. 3.5. Dipnoi- a group that has failed to evolve as Amphibia. 3.6. Lissamphibia. 3.7. Sphenodon- a living fossil. 3.8. Extinct reptiles. 3.9. Adaptive radiation in Reptilia. 	15
IV	 Comparative Vertebrate Osteology- I 4.1. Embryonic development of- a) neurocranium, b) splanchnocranium and c) dermatocranium. 4.2. Comparative account of jaw suspension. 4.3. Embryonic development of Vertebra. 4.4. Vertebral column of tetrapods- Atlas, Axis, Typical Vertebra, Thoracic vertebra, Trunk vertebra, Caudal vertebra of Dog fish and Bony fish, Frog, Varanus, Pigeon, and Rabbit. 	15
Ed. Tata M • Vertebrate	comparative anatomy, Function, Evolution, K AcGraw Hill Publication. Life: F.H.Pough, C.M.Janis, J.B.Heiser, 6 . • Functional Anatomy of Vertebrates.	

• An evolutionary perspective. K.F.Liem, W.E.Bemis, W, F.Walker, L.Grande, 3rd Ed. Harcourt College Publishers.

- The Life of Vertebrates: J.Z.Young, ELBS-Oxford Univ. Press.
- A Text Book of Zoology; T.J.Parkar and W.A.Haswell, McMillan.
- Chordate Zoology; E.L.Jordan and P.S.Verma, S. Chand & Company
- Biology of Invertebrates; J.A.Pechenik, 4th Ed, Tata McGraw Hill Publication.

• Analysis of Vertebrate Structure: Milton Hildebrand, Wiley International **Additional References**:

- Invertebrate Zoology; E.L.Jordan and P.S.Verma, S. Chand & Company
- Life of Invertebrates; Russell, W.D. Hunter, McMillan
- Invertebrate Zoology: Bares, R.D., Saunders Publication

Course Code	Major SEM – I	Credits	Lectures/Week
K23PS ZOOMJ112	Paper II- Biochemistry and Metabolism – I	4	4
	l		

After successful completion of this course, students would be able to

- Knowledge of structures and functions of various biomolecules
- Understanding energy consumptions of various biomolecules in pathways
- To estimate the use of energy in different forms and interaction of biomolecules
- To analyze new molecules and pathways and their energy consumptions
- Evaluate the impact of biochemical processes on human health, disease development, and therapeutic interventions.
- Design experiments or investigations to study specific biochemical processes or metabolic pathways.

Biomolecules- a structural and functional approach-I 1.1 Concepts:1.1 Concepts:1.1.1 Biological Macromolecules.1.1.2 Polymerization and macromolecules.1.1.3 Central role of carbon.1.1.4 Common functional groups.1.1.5 Common ring structure and	Unit	Topics	No of Lectures
I 1.1.1 Biological Macromolecules. 1.1.2 Polymerization and macromolecules. 1.1.3 Central role of carbon. 1.1.4 Common functional groups. 15		approach-I	
I 1.1.3 Central role of carbon. 1.1.4 Common functional groups.		1.1.1 Biological Macromolecules.	
1.1.4 Common functional groups.	Ŧ	,	15
	1		15
		1.2.1. Classification: mono-, oligo- and poly-saccharides.	

	and pyrimidines.	
	1.4.2. Structure of DNA: Watson and Crick model; different forms of DNA double helix.	
	1.4.3. Structure, types and functions of RNA.	
	1.5. Complex biomolecules	
	1.5.1 Glycoproteins: Blood group substances	
	1.5.2. Glycolipids: Gangliosides.	
	1.5.3 Lipoproteins: Classification and functions- chilomicrons, VLDL, LDL, HDL, and free fatty	
	acid-albumin complex.	
	Biochemical Thermodynamics 2.1. Biochemical Thermodynamics:	
	2.1.1 Laws of thermodynamics, free energy, entropy, enthalpy, exergonic and endergonic	
	reactions.	
	2.1.2 High energy compounds: ATP, ADP, ATP-ADP cycle, ATP-AMP ratio.	
п	2.1.3 Biological oxidation: Electron transport chain and mitochondria; Oxidative	15
	phosphorylation- mechanism, uncoupling of oxidative phosphorylation and its	
	significance.	
	2.1.4 Free radicals, antioxidants and antioxidant system.	
	Metabolic pathways and Integration of	
	metabolism-I	
III	3.1. Metabolism: Concept; Definitions; Catabolism; Anabolism.	15
	3.2. Carbohydrate Metabolism:	

	1	· · · · · · · · · · · · · · · · · · ·
	3.2.1. Glycolysis: Reaction sequence, flow of carbon, conversion of pyruvate to lactate and	
	Acetyl coenzyme-A, significance of pyruvate- lactate interconversion, aerobic and	
	anaerobic glycolysis and energetic of glycolysis. Regulation of glycolysis.	
	3.2.2. Gluconeogenesis: Reaction sequence from pyruvate, gluconeogenesis from amino	
	acids, glycerol, propionate, lactate. Regulation of gluconeogenesis.	
	3.2.3. Glycogen metabolism: Glycogenesis, Glycogenolysis. Regulation of the two pathways.	
	3.2.4. Significance of following pathways: Hexose monophosphate shunt as a multifunctional	
	pathway; Uronic Acid Pathway; Glyoxalate cycle.	
	3.3. Lipid Metabolism:	
	3.3.1. Dynamics of body lipids, mobilization of fats, regulation of hormone sensitive TGlipase, fate of glycerol and free fatty acids.	
	3.3.2. Fatty acid metabolism: Oxidation of even-carbon and odd-carbon atom fatty acid,	
	oxidation of unsaturated fatty acids, biosynthesis of fatty acids including desaturation, metabolism of phospholipids, cholesterol and *alcohol.	
	Regulation of metabolism	
	4.1. Regulation of metabolism4.1.1. Concept of homeostasis.	
IV	-	15
	4.1.2. Regulation of metabolic flux by genetic mechanisms: Control of enzyme synthesis,	
L		<u> </u>

constitutive and inducible enzymes; induction and repression of enzymes (lac operon	
and trp operon); regulatory proteins- Helix turn Helix, Zinc Fingers, Leucine Zippers,	
4.1.3. Regulation of metabolism by extracellular signals: nutrient supply, nutrient transport, endocrine control, neural control.	

Textbooks:

- Lehninger Principles of Biochemistry 8th Edition by David L. Nelson
- Biochemistry- 2nd Ed. 2002 by U. Satyanarayan, Books and Allied Publ.
- Biochemistry- 2nd Ed. S.C. Rastogi, Tata McGraw Hill.
- Fundamentals of Biochemistry- 3rd Ed. 1988; J.I.Jain, S. Chand and Co. Publ.
- Biochemistry- a Functional Approach; MacGuilver
- www.enzymesIndia.com

Additional References:

- Biochemistry by Donald Voet (Author) Judith voet and more
- Cell and molecular biology 8th ed- De Robertis E.D.P

Course Code	SEM I - Non-chordates, chordates and their phylogeny I AND Biochemistry and Metabolism - I	Credits	Lectures/Week
K23PSZOOMJP11	Practical 1 (Paper 1 + Paper 2)	4	8

After successful completion of this course, students would be able to

- Knowledge of characteristics of organisms mentioned structures and functions on various biomolecules
- Understanding the role of characteristics in placing the organisms in specific taxonomic classification, energy consumptions of various biomolecules in pathways
- The learner will be well versed with the knowledge of application of characteristics for taxonomic hierarchy and will be able to estimate the use of energy in different forms and interaction of biomolecules
- Analysis of given animal to place them in appropriate taxonomic hierarchy and their roles in evolution. To analyze new molecules and pathways and their energy consumptions

Рар	er 1- Non-chordates, chordates and their phylogeny I
1	Study of animal type*: Sepia: Morphology, digestive system, nervous system, reproductive system, Mounting of: jaws, radula, statocyst and spermatophore
2	Study of systematic and major features of: Protozoa (Amoeba, Volvox, Noctiluca, Paramoecium, Plasmodium); Porifera (Leucosolenia,Grantia, Euplectella, Euspongia); Coelenterata (Obelia colony, Physalia, Porpita, Sea-anemone, Madrepora, Aurelia); Mollusca (Chiton,Dentalium, Patella, Aplysia, Limnea/Achatina, Mytilus, Loligo/Octopus, Nautilus); Echinodermata (Starfish, Brittle star, Sea urchin, Sea cucumber, Feather star); Minor Phyla (Comb jelly, Lingula, Sagitta,); Hemichordata (Balanoglossus).
3	Study of accessory respiratory organs in: Anabas, Clarius, Sacchobranchus and Boleopthalmus,
4	Study of Larval forms: Echinoderm larvae and Tornaria larva
5	Cephalochordata (Amphioxus). Study of systematics and major features of: Agnatha (Petromyzon, Myxine); Pisces (Shark, Sting ray, Electric ray,

Hippocampus, Eel, and any lung fish); Amphibia(Caecilian, Salamander, Frog, Toad); Reptilia (Turtle/Terrapin, Tortoise, Calotes/ Chameleon, Draco, Phrynosoma, Viper, Rattle snake, Hydrophis, Crocodile/Alligator/Gharial)
Mounting of spicules of Holothurian
Comparative Osteology: Types of vertebrae (Procoelous, Opisthocoelous, Amphicoelous, Heterocoelous)
er 2- Biochemistry and Metabolism – I
Qualitative tests for carbohydrates and identification of the nature of carbohydrates in the given sample: Molisch's test; Anthrone test; Iodine test; Barfoed's test,; Seliwanoff's test; Fehling's test; Benedict's test, Picric acid test; Mucic acid test; and Bial's test
Determination of glucose by Benedict's method (volumetric).
Determination of reducing sugars by 3,5-dinitrosalicylic acid (colorimetric) method.
Determination of glycogen in the given tissue (liver/ skeletal muscle/ kidney/ brain)
Acid and enzyme hydrolysis of glycogen and colorimetric estimation of the products by 3,5-DNSA method
Isolation of starch from potato
Determination of acid value of fats/ oils
Determination of saponification value of fats/ oils.
Reichert-Meissl (RM) number of fat.
ooks:-
Invertebrate Zoology; E.L.Jordan and P.S.Verma, S. Chand & Company.

• An introduction to practical biochemistry -Plummer

Course Code	Elective SEM – I	Credits	Lectures /Week
K23PSZOOO E131	Tools and Techniques in Biology - I	4	4
Course Outco After successfu	mes: al completion of this course, students wou	ld be able t	0
• Knowled	ge of principles of various tools and techn	iques	
• Understa	anding of working of tools and techniques		
• Applicat	ions of tools and techniques in research		
 Analysis 	of various topics based on the above area	S	
Critically	y assess the strengths and limitations of	different ex	perimenta

designs or methodologies in biological research.
Create reports, presentations, or visualizations to effectively communicate research findings and experimental procedures.

Unit	Topics	No of Lectures
	Microtomy, microscopy, centrifugation 1.1. Microtomy: Tissue fixation, dehydration, clearing, infiltration, embedding for paraffin	
	method, sectioning, mounting, staining- differential and specific.	
I	1.2. Principles and applications of microscopy: Light microscopy, phase contrast microscopy,	15
	fluorescence microscopy, polarization microscopy, confocal scanning microscopy,	
	transmission electron microscopy, specimen preparation for electron microscopy, scanning	
	electron microscopy.	

Basic principles of centrifugation, Low speed	
and high speed centrifuges, ultracentrifuge, application of centrifugation-preparative	
techniques, analytical measurements; care of centrifuges and rotors.	
Radioisotopes and extraction techniques	
2.1. Principles and applications of radioisotopes: Use of isotopes in biological sciences;	
units of radioactivity, detection and measurement of radioactivity by scintillation counting,	
autoradiography, preparation for the experiment, performing the experiment.	
II 2.2 Principles and application of filtration, distillation and extraction: Ordinary filtration under	15
suction pressure, fractional distillation, steam distillation, technique of extraction with	
solvents.	
Principles and application of Spectroscopy 3.1. Spectroscopy	
3.1.1. Ultraviolet and visible absorption spectroscopy	
III 3.1. 2. Fluorescence spectroscopy	15
3.1.3. Nuclear magnetic resonance spectroscopy	
3.1.4. Mass spectroscopy	
3.1.4. Mass spectroscopy3.1.5. Atomic absorption spectrophotometer	
3.1.5. Atomic absorption spectrophotometer Data management and analysis	
3.1.5. Atomic absorption spectrophotometer	15

4.1.2 Secondary sources	
4.2.5 Data Classification and Presentation	
4.2.1 Classification of data (Geographical, Chronological, Qualitative, Quantitative)	
4.2.2 Tabulation of data (one-way table, two-way table, complex table)	
4.2.3 Type of charts (Line, Column, Scatter plot, Box plot, Heat Map)	
designs; basic principles of experimental design; important experimental designs.	

Textbooks:

- Modern Experimental Biochemistry; 3rd Ed. Rodney Boyer, Pearson Education.
- Principles and Techniques of Practical Biochemistry. Wilson and Walker, Cambridge Univ. Press.
- Biological Science; 3rd Ed. D.J.Taylor, N.P.O.Green, G.W.Stou, Cambridge Univ. Press
- Cell and Molecular Biology-Concepts and Experiments, Gerald Karp. John Wiley & Co.
- Introductory Practical Biochemistry; S.K.Swahney, Randhir Sing. Narosa Publ.
- An Introduction to Practical Biochemistry; 3rd Ed. David Plummer. Tata McGraw Hill
- Practical Research Planning and Design; 2nd Ed. Paul D. Leedy. Macmillan Publ.
- Elementary Practical Organic Chemistry Part I: Small Scale Preparations. 2nd Ed. Arthur I. Vogel. CBS Publ. and Distributors.
- Research Methodology. Methods and Techniques; C.R.Kothari. Wiley Eastern Ltd. Mumbai

Data Management and Analysis:

- The practice of statistics in life sciences Brigitte Baldi and David Moore, W. H. Freeman.
- Mahajan's methods in Biostatistics for Medical students and Research Workers Bratati

- Banerjee, Jaypee Publishers.
- Biostatistics: Basic concepts and methodology Wayne Daniel and Chad Cross, Wiley.
- Biostatistical analysis Jerrold H. Zar, Pearson.
- Statistics for people who (think they) hate statistics Neil J. Salkind, SAGE Publications.
- Discovering Statistics using IBM SPSS Statistics Andy Field, SAGE Publications.
- IBM SPSS Statistics Step by Step Darren George and Paul Mallery, Taylor & Francis.
 - Statistics for Ecologists using R and Excel Mark Gardener, Pelagic Publishing.

Additional References:

• The Essential Guide to Doing Your Research Project Paperback – 25 January 2011-O'Leary

• Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Paperback – 2 January 2018- by <u>John W. Creswell</u> (Author), <u>J.</u> <u>David Creswell</u> (Author)

• Case Study Research and Applications: Design and Methods -**By Robert Yin**

Course Code	RM SEM – I	Credits	Lectures /Week
K23PSZOOR M141	Research Methodology	4	4
Course Outco After successf	mes: ul completion of this course the learner will	be able to	:-

- Explain the importance of defining a research problem and the role of research design in conducting a study.
- Use techniques to define research problems effectively and develop a research design suitable for a specific research problem.
- Evaluate the appropriateness of different research designs for different research problems and assess the validity of research designs.
- Critique research designs, identify potential limitations, and propose improvements to enhance the quality of research designs
- Develop research proposals, including the formulation of research questions, design considerations, and anticipated outcomes.

Unit	Topics	No of Lectures
I	Meaning of research and types of research1.1Motivation in research;1.2 Types of research; research approaches;significance of research; research methods versusmethodology;1.3 Research and scientific methods; Importance ofknowing how research isdone;1.4 Research process; Criteria for good research	15
п	Research problem and research design2.1 Selecting research problem; necessity of defining a problem; techniques involved in defining the problem;2.2 Meaning of research design; need	15

	for research design; important concepts related to research design; different research	
III	Interpretation and report writing 3.1Interpretation and report writing: Meaning of interpretation; technique of interpretation; precautions in interpretation; 3.2 Significance of report writing; layout of research report; types of reports; *Presentation of research work- oral, poster and writing research paper; Precautions for writing research report	15
IV	 Review of related literature and Writing research proposal 4.1 Review of related literature: Understanding the role of review; how to begin a search for related literature- Library reference, recording and indexing, classification of references, internet sites for biological references; downloading the information through internet; requests for reprints through e-mail and post; classification and filing of reprints. 4.2 Writing research proposal: Characteristics of a proposal; content and organization of a proposal; weakness in proposal seeking funding 	15
Textbooks:		
	al Research Planning and Design; 2nd Ed. Paul lan Publ	D. Leedy.
	ch Methodology. Methods and Techniques; C.R.Koth Ltd. Mumbai	nari. Wiley

Course Code	Major SEM – II	redit s	Lecture s/Week
K23PSZOOM J211	Paper I- : Non-chordates, chordates and their phylogeny - II		4
Course Outco	mes:		
After successf	ul completion of this course, students would be a	able to	
• Knowled	lge of characteristics of organisms mentioned		
	anding the role of characteristics in placing th taxonomic classification	le orga	inisms in
	rner will be well versed with the knowledge of eristics for taxonomic hierarchy	f appli	ication of
•	s of given animal to place them in appropr ay and their roles in evolution	iate t	axonomic
	y assess the scientific literature and research fin ordate and chordate phylogeny.	dings	related to
aspects	and conduct experiments or investigations to of non-chordate or chordate evolution, such mental biology or molecular phylogenetics.		-
Unit	Topics		No of Lecture s
	 Phylogeny, Systematics of non-chordates assorted topic-II 1.1. Platyhelminthes and Nemethelminthes 1.2. Acanthocephala 	and	
_	1.3. Annelida		
I	1.4. Sipunculoidea		15
	1.5. Arthropoda		

1.6 Onychophora – Peripatus, A connecting link between Annelida and Arthropoda.

II	 Phylogeny of Protochordates, Agnatha and assorted topics II 2.1. Urochordata and its affinities. 2.2. Cephalochordata and its affinities 2.3. Vertebrate ancestry and origin of Vertebrates. 2.4. Changes leading to first vertebrates. 2.5. Salient features and phylogeny of Ostracoderms. 2.6. Affinities of Cyclostomes- a) resemblance with Cephalochordates. b) differences from fishes. c) vertebrate characters. d) specialized characters 	15
III	CharactersPhylogeny, Systematics of Chordates and Assorted topics- II3.1. Warm blooded reptiles.Archaeopteryx- a connecting link between Reptiles and Aves.3.2. Affinities of Aves and classification up to subclass.3.3. Origin of flight (theory of cursorial & arboreal origin).3.4. Birds as glorified reptiles.3.5. Egg laying mammals- connecting link between reptiles and mammals.3.6. Classification of mammals up to orders.3.7. Dentition in mammals.3.8. Walking gait (Plantigrade, Digitigrade, and Unguligrade)	
IV	Comparative Vertebrate Osteology- II 4.1. Pectoral & Pelvic girdles of Dog fish, Bony fish, Frog, Varanus, Pigeon and Rabbit	15

4.2.	Comparative	anatomy	of limbs	of tetrapods.
------	-------------	---------	----------	---------------

4.3. Mechanism of support and movements- Running, Jumping and Digging.

Textbooks:

- Vertebrate comparative anatomy, Function, Evolution, K.V. Kardong, 3rd Ed. Tata McGraw Hill Publication.
- Vertebrate Life: F.H.Pough, C.M.Janis, J.B.Heiser, 6th Ed. Pearson Education. Functional Anatomy of Vertebrates.
- An evolutionary perspective. K.F.Liem, W.E.Bemis, W, F.Walker, L.Grande, 3rd Ed. Harcourt College Publishers.
- The Life of Vertebrates: J.Z.Young, ELBS-Oxford Univ. Press. •
- A Text Book of Zoology; T.J.Parkar and W.A.Haswell, McMillan. Chordate Zoology; E.L.Jordan and P.S.Verma, S. Chand & Company
- Biology of Invertebrates; J.A.Pechenik, 4th Ed, Tata McGraw Hill Publication.

• Analysis of Vertebrate Structure: Milton Hildebrand, Wiley International **Additional References**:

- Invertebrate Zoology; E.L.Jordan and P.S.Verma, S. Chand & Company
- Life of Invertebrates; Russell, W.D. Hunter, McMillan
- Invertebrate Zoology: Bares, R.D., Saunders Publication

Course Code	MAJOR SEM – II	Credits	Lectures /Week
K23PSZOOM J212	Paper II- Biochemistry and Metabolism- II	4	4
Course Outco	mes:		
After successfu	ul completion of this course, students would	l be able t	0
• Knowled	ge of structures and functions on various b	iomolecul	es
 Understand pathway 	anding energy consumptions of variou vs	ls biomo	lecules ir
• To estin biomoleo	nate the use of energy in different forms cules	and inte	eraction o
• To analy	ze new molecules and pathways and their e	nergy con	sumption
	e the impact of biochemical processes on hu nent, and therapeutic interventions.	man heal	th, diseas
	nodels or simulations to illustrate complex bi polic networks.	ochemica	l processes
Unit	Topics		No of Lectures
	Biomolecules- a structural and fu approach-II 1.1. Proteins as polymers of amino acids	nctional	
1.1.1. Amino acids: structure, classification based on structure, polarity, nutritional		n based	
Ι	requirement and metabolic fate; properties amino acids; derivatives of amino acids,	of	15
	non-transcribed amino acids as protein constituents, D-amino acids.		
	1.1.2. Organization of protein structure: Pr structure and peptide bond, secondary, ter	•	

	and quaternary structure; conjugate proteins- haemoglobin, cytochromes, myoglobin;			
	bonds involved in protein organization.			
	1.1.3. Properties of proteins: classification, denaturation and protein folding.			
	1.1.4. Biological functions of proteins. Biologically important peptides: glutathione, octa-, nona-,			
	and deca-peptides.			
	Enzymes and Enzyme kinetics 2.1. Enzymes and Enzyme kinetics.			
	2.1.1. Enzymes: Nomenclature and classification with numerical code; chemical nature of enzymes.			
	2.1.2. Mechanism of enzyme action: Fischer's Lock and Key Theory, Koshland's Induced fit			
	model; Mechanism of enzyme catalysis.			
	2.1.3. Enzyme kinetics: Michaelis Menton equation; Lineweaver-Burk plot; significance of Vmax			
II	and Km; factors affecting enzyme			
	activity; enzyme activation and inhibition.			
	2.1.4. Regulatory enzymes: a) covalently modulated, b) allosteric regulation, c) Isoenzymes			
	(LDH, CK, ALP, ADH)			
	2.1.5. Non-protein enzymes- Ribozymes.			
	2.1.6. Advanced enzymes in human healthcare (e.g. fungal lactase, Hemicellulase, Trypsin			
	chymotrypsin mix)			
	Metabolic pathways and Integration of metabolism 3.1. Protein Metabolism:			
III	3.1.1. Metabolism of amino acids: Amino acid pool,	15		
	transamination; oxidative and nonoxidative			

	deamination; metabolism of branched chain amino acids; fate of carbon	
	skeleton of amino acids.	
	3.1.2. Metabolism of ammonia: Urea cycle.	
	3.2. Metabolism of nucleic acids:	
	3.2.1 Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway.	
	3.2.2. Conversion of ribonucleotides to deoxyribonucleotides.	
	3.2.3. Degradation of nucleotides.	
	3.3. Integration of Metabolism, Energy demand and supply; Integration of major metabolic	
	pathways of energy metabolism; intermediary metabolism; organ specialization and	
	metabolic integration. Metabolism in starvation	
	Regulation of metabolism and inborn errors of metabolism	
	4.1. Inborn errors of metabolism	
	4.1.1. Carbohydrate metabolism: Glycogen storage disease,G-6-PD deficiency	
IV	4.1.2. Lipid metabolism: Metabolic disorders of cerebrosides.	15
	4.1.3. Protein metabolism: PKU, Albinism, Cystinuria	
	4.1.4. Purine metabolism: Primary Gout	
	4.2. Mineral metabolism and diseases: Hypocalcaemia, Hypercalcaemia and osteoporosis	

Textbooks:

- Lehninger Principles of Biochemistry 8th Edition by <u>David L. Nelson</u>
- Biochemistry- 2nd Ed. 2002 by U. Satyanarayan, Books and Allied Publ.

- Biochemistry- 2nd Ed. S.C. Rastogi, Tata McGraw Hill.
- Fundamentals of Biochemistry- 3rd Ed. 1988; J.I.Jain, S. Chand and Co. Publ.
- Biochemistry- a Functional Approach; MacGuilver
- www.enzymesIndia.com

Additional References:

- Biochemistry by Donald Voet (Author) Judith voet and more
- Cell and molecular biology 8th ed- De Robertis E.D.P

K23PSZOO MJP21Practical 1 (Paper 1 + Paper 2)48	Course Code	SEM II - Non-chordates, chordates and their phylogeny and Biochemistry and Metabolism- II	Credits	Lectures /Week
		Practical 1 (Paper 1 + Paper 2)	4	8

After successful completion of this course, students would be able to

- Knowledge of characteristics of organisms mentioned structures and functions on various biomolecules
- Understanding the role of characteristics in placing the organisms in specific taxonomic classification, energy consumptions of various biomolecules in pathways
- The learner will be well versed with the knowledge of application of characteristics for taxonomic hierarchy and will be able to estimate the use of energy in different forms and interaction of biomolecules
- Analysis of given animal to place them in appropriate taxonomic hierarchy and their roles in evolution. To analyze new molecules and pathways and their energy consumptions

Pap	er 1 Non-chordates, chordates and their phylogeny - II
1	Study of animal type*: Periplanata americana: Morphology, digestive system, nervous system, reproductive system and life history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca
2	Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella); Annelida (Nereis, Earthworm, Leech); Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle). Urochordata (Simple Ascidian, Salpa/ Doliolum); Cephalochordata (Amphioxus).
3	Study of Larval forms: Larvae of Helminthes- Miracidium, Redia, Cercaria, Metacercaria; Trochophore, Crustacean larvae, Ascidian tadpole.
4	Study of systematics and major features of: Aves (Ostrich, Kiwi, Kite, Owl, and Duck); Mammals (Duck billed platypus, Echidna, Kangaroo, Shrew, Bat, Loris, Seal/ Walrus, Dolphin, Sea Cow, Tiger, Giant panda, Tapir, Camel, Striped squirrel, Guinea pig, Porcupine, Rabbit)
5	Comparative Osteology: Study of pectoral and pelvic girdles (Shark, Bony fish, Frog, Varanus, Pigeon, Rabbit); Study of comparative anatomy of tetrapod limbs (Frog, Varanus, Pigeon and Rabbit).
	*Demonstration practical/ Dissection/Virtual dissection/Model (2D or 3D)/Chart of animal system as per UGC guidelines.

Рар	Paper 2 Biochemistry and Metabolism- II		
6	Determination of total cholesterol and HDL cholesterol from serum		
7	Qualitative tests for amino acids and Proteins: Ninhydrin test; Xanthoproteic test; Millon's test; Biuret test.		
8	Colorimetric estimation of protein by Peterson-Lowry method.		
9	Quantitative estimation of amino acids using ninhydrin reagent.		
10	Isolation of casein from milk		
11	Detection of conformation of BSA by viscosity measurement and effect of varying concentration of urea on viscosity of BSA.		
12	SDH specific activity.		
	Textbooks		
•	• Invertebrate Zoology; E.L.Jordan and P.S.Verma, S. Chand & Company.		
•	• An introduction to practical biochemistry -Plummer		

Course Code	Elective II SEM – II	redit s	Lecture s/Week	
K23PSZOOO E231	Tools and Techniques in Biology-II	4	4	
Course Outco	omes:			
After successf	ul completion of this course, students would be a	able to		
• Knowled	lge of principles of various tools and techniques			
• Underst	anding of working of tools and techniques			
 Applicat 	ions of tools and techniques in research			
 Analysis 	s of various topics based on the above areas			
	y assess the strengths and limitations of differe or methodologies in biological research.	ent exp	erimental	
-	new or modified protocols or techniques to optimizers or overcome technical challenges.	ize exp	erimental	
	Topics		No of	
Unit			Lecture s	
	Principles and application of chromatograph 1.1. Chromatography	ıy I		
	1.1.1. Planar chromatography (Paper and Thin layer): Preparation of stationary support, solver	ıt,		
	detection and measurement of components,			

1.1.2. Column chromatography: Packing and

resins, selection of ion-exchanger, choice of

column, collection of eluent, detection of eluent,

1.1.3. Ion exchange chromatography: Ion exchange

operation of column, loading the column, eluting the

15

applications.

application.

Ι

	buffers, preparation and use of ion-exchangers, storage of resins.	
II	 Principles and application of chromatography II 2.1. Gel chromatography: Theory of gel filtration; physical characteristics of gel chromatography, chemical properties of gel, selection of gel, gel preparation and storage, operation of gel column, application 2.2 Affinity chromatography: Chromatography media, immobilized ligands, attachment of ligands to the matrix, experimental procedures and application 	15
III	 Principles and application of chromatography and Electrophoresis 3.1. Gas chromatography 3.1.1. Gas chromatography (GC): Instrumentation, selection of operating conditions, analysis of data and application. 3.1.2. HPLC. 3.2. Electrophoresis *3.2.1. Theory of electrophoresis *3.2.2. Horizontal agarose gel electrophoresis *3.2.3. Vertical polyacrylamide gel electrophoresis 3.2.4. Pulse field electrophoresis 3.2.5. Capillary electrophoresis 3.2.6. Isoelectric focusing of proteins 3.2.7. Two dimensional electrophoresis. 	15
IV	Research Methodology and data management -II 4.1 Concepts of Measurements	15

	Г		
	4.1.1 Univariate (standard deviation, variance, quartiles)		
	4.1.2 Bivariate (correlation and regression)		
	4.1.3 Multivariate (ANOVA: one-way, two-way)		
	4.1.4 Level of significance and p-value		
	4.1.5 Normal distribution, Skewness, Kurtosis, Outliers		
	4.2 Testing of Hypothesis		
	4.2.1 Null hypothesis, Alternative hypothesis		
	4.2.2 Type 1 and Type 2 Errors		
	4.2.3 Testing of Hypothesis (single population mean, two population means)		
	4.2.4 One-tailed and Two-tailed tests		
	4.3 Parametric and Non-parametric tests		
	4.3.1 Parametric tests: t test, z test, F test		
	4.3.2 Non-parametric tests: Chi-square test, Mann- Whitney test, Kruskal-Wallis test,		
	Friedman Test, Wilcoxon signed-rank test		
Textbooks:			
• Modern Educatio	Experimental Biochemistry; 3rd Ed. Rodney Boyer, I	Pearson	
	es and Techniques of Practical Biochemistry. Wilson and ge Univ. Press.	Walker,	
0	Biological Science; 3rd Ed. D.J.Taylor, N.P.O.Green, G.W.Stou, Cambridge Univ. Press		
	Cell and Molecular Biology-Concepts and Experiments, Gerald Karp. John Wiley & Co.		
• Introduc Publ.	 Introductory Practical Biochemistry; S.K.Swahney, Randhir Sing. Narosa Publ. 		
	• An Introduction to Practical Biochemistry; 3rd Ed. David Plummer. Tata McGraw Hill		
Practical Macmilla	Research Planning and Design; 2nd Ed. Paul D. an Publ.	Leedy.	

- Elementary Practical Organic Chemistry Part I: Small Scale Preparations. 2nd Ed. Arthur I. Vogel. CBS Publ. and Distributors.
- Research Methodology. Methods and Techniques; C.R.Kothari. Wiley Eastern Ltd. Mumbai Data Management and Analysis:
- The practice of statistics in life sciences Brigitte Baldi and David Moore, W. H. Freeman.
- Mahajan's methods in Biostatistics for Medical students and Research Workers Bratati
- Banerjee, Jaypee Publishers.
- Biostatistics: Basic concepts and methodology Wayne Daniel and Chad Cross, Wiley.
- Biostatistical analysis Jerrold H. Zar, Pearson.
- Statistics for people who (think they) hate statistics Neil J. Salkind, SAGE Publications.
- Discovering Statistics using IBM SPSS Statistics Andy Field, SAGE Publications.
- IBM SPSS Statistics Step by Step Darren George and Paul Mallery, Taylor & Francis.
- Statistics for Ecologists using R and Excel Mark Gardener, Pelagic Publishing.

Additional References:

• The Essential Guide to Doing Your Research Project Paperback – 25 January 2011-O'Leary

• Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Paperback – 2 January 2018- by <u>John W. Creswell</u> (Author), <u>J.</u> <u>David Creswell</u> (Author)

• Case Study Research and Applications: Design and Methods -By Robert Yin

Evaluation Scheme for First Year (PG) under NEP (4 credits)

I. Internal Evaluation for Theory Courses – 40 Marks

1) Continuous Internal Assessment(CIA) Assignment -

Project - 40 marks

II. External Examination for Theory Courses – 60 Marks

Duration: 2 Hours

Theory question paper pattern:

Question	Based on	Marks
Q.1	Unit I	15
Q.2	Unit II	15
Q.3	Unit III	15
Q.4	Unit IV	15

- All questions shall be compulsory with internal choice within the questions.
- Each Question may be sub-divided into sub questions as a, b, c, d, etc. & the allocation of Marks depends on the weightage of the topic.

III. Practical Examination

- Each core subject carries 50 Marks
- Duration: 3 Hours for each practical course.
- Minimum 80% practical from each core subjects are required to be completed.
- Certified Journal is compulsory for appearing at the time of Practical Exam

NOTE: To pass the examination, attendance is compulsory in both Internal & External (Theory + Practical) Examinations.