AC 01.09.23 ITEM NO: 23.1

Deccan Education Society's

Kirti M. Doongursee College of Arts, Science and Commerce (AUTONOMOUS)

Affiliated to

UNIVERSITY OF MUMBAI

Syllabus for Program: Bachelor of Arts Course: F.Y.B.SC. (Semester I&II) Subject: Mathematics

Choice Based Credit System (CBCS) with effect from Academic Year 2023-2024

PROGRAM OUTCOMES

РО	Description
A studer	nt completing Bachelor's Degree in Arts/Commerce/Science Program
will be a	ble to
PO1	Disciplinary Knowledge
101	Demonstrate comprehensive knowledge of the disciplines that form a
	part of a graduate Programme Execute strong theoretical and practical
	understanding generated from the specific graduate Programme in the
	area of work.
PO2	Critical Thinking and Problem solving:
	Exhibit the skills of analysis, inference, interpretation and problem-
	solving by observing the situation closely and design the solutions.
PO3	Social competence:
	Display the understanding, behavioral skills needed for successful
	social adaptation, work in groups, exhibits thoughts and ideas
	effectively in writing and orally.
PO4	Research-related skills and Scientific temper:
	Develop the working knowledge and applications of instrumentation
	and laboratory techniques. Able to apply skills to design and conduct
	independent experiments, interpret, establish hypothesis and
DOF	inquisitiveness towards research.
PO5	Trans-disciplinary knowledge:
	Integrate different disciplines to uplift the domains of cognitive abilities
	and transcend beyond discipline-specific approaches to address a
DO6	Common problem.
100	Performing dependently and collaboratively as a part of team to meet
	defined objectives and carry out work across interdisciplinary fields
	Execute interpersonal relationships self-motivation and adaptability
	skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics:
	Demonstrate empathetic social concern and equity centered national
	development, and ability to act with an informed awareness of moral
	and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability:
	Understand the impact of the scientific solutions in societal and
	environmental contexts and demonstrate the knowledge of and need
	for sustainable development.

Deccan Education Society's

Kirti M. Doongursee College (autonomous)

Proposed Curriculum as per NEP 2020 Year of

implementation- 2023-24

Name of the Department: Mathematics

Semester	Course Code	Course Title	Vertical	Credit
	K23USMATMJ111	Calculus -I	Major	2
	K23USMATMJ112	Algebra -I	Major	2
Ι	K23USMATMJP11	Practical I	Major	2
	K23USMATVC141	Advanced Excel	VSC	2
	K23USMATMJ211	Calculus – II	Major	2
	K23USMATMJ212	Discrete Mathematics	Major	2
II	K23USMATMJP21	Practical II	Major	2
	K23USMATMR221	First Order Differential Equations	Minor	2
	K23USMATVC241	SQL and Extension	VSC	2

Course Code	MAJOR SEM – I	Credits	Lectures /Week
K23USMATMJ11	Paper I : Calculus -I	2	2
Course Outcomes			
After successful co	mpletion of this course, students would be able to		
Define bour	nded sets, Infimum and supremum, sequences.		
• Explain re	al numbers and its various properties, sequences and	l its converg	ence.
 Apply variant subsequent 	ous properties of real numbers, standard theorem res	ns of sequ	ences and
• Examine be	oundedness of a sequence, convergence of sequences	3.	
Unit	Topics		No of Lectures
I I I I I I I I I I I I I I I I I I I	 Real Number System i) Real number system R and order properties of R, absolute value and its peoperties. ii) AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Interior points, Limit point, Hausdorff property. iii) Bounded sets, Statements of l.u.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, Density of rationals. 		
\mathbf{II} Sequences in R i) Definition of sequence and examples, Convergence of sequences, every convergent sequences is bounded. Limit of a convergent sequence and uniqueness of limit, Divergent sequences. ii) Convergence of standard sequences like $\left(\frac{1}{1+na}\right) \forall a > 0, (b^n) \forall b, 0 < b < 1, (c^{\frac{1}{n}}) \forall c > 0 \text{ and } (n^{\frac{1}{n}}).$ iii) Algebra of convergent sequences, Sandwich theorem, Monotone convergence theorem and consequences of $\left(\left(1+\frac{1}{n}\right)^n\right)$. iv) Definition of subsequence, Subsequence of a convergent sequence is convergent and converges to the same limit, Definition of a Cauchy sequences, Every convergent sequences is a Cauchy sequence and converse.			15
 Textbooks: R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964. K. G. Binmore, Mathematical Analysis, Cambridge University Press, 1982. 			

- R. G. Bartle- D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.
- Sudhir Ghorpade and Balmohan Limaye, A course in Calculus and Real Analysis, Springer International Ltd, 2000.

- T. M. Apostol, Calculus Volume I, Wiley & Sons (Asia) Pte, Ltd.
- Richard Courant-Fritz John, A Introduction to Calculus and Analysis, Volume I, Springer.
- Ajit kumar and S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014.
- James Stewart, Calculus, Third Edition, Brooks/ cole Publishing Company, 1994.
- A Treatise on Differential Equations, MacMillan and Co., 1956

Course Code	MAJOR SEM – I	Credits	Lectures /Week
K23USMATMJ112	Paper II : Algebra -I	2	2
Course Outcomes			
After successful co	mpletion of this course, students would be able to		
• Describe pr	operties of integers, divisibility, congruences, function	ns, relation	s
Classify var	ious properties of divisibility , congruence modulo n		
• Solve probl theorems .	ems of divisibility, congruences by employing su	itable algor	rithms and
• Examine co	ngruence, residue classes in integers .		
Unit	Topics		No of Lectures
	Integers & Divisibility		
I	i) Statements of well-ordering property of non-negatintegers, Divisibility in integers, division algorithm, common divisor (g.c.d.) and least common multiple two non zero integers, basic properties of g.c.d. such existence and uniqueness of g.c.d. of two non zero in & b and that the g.c.d. can be expressed as ma + nh m, $n \in Z$, Euclidean algorithm.	ive greatest (l.c.m.) of n as ntegers a o for some	15
	ii) Primes, Euclid's lemma, Fundamental Theorem of arithmetic, The set of primes is infinite, there are ar large gaps between primes, there exists infinitely map primes of the form $4n - 1$ or of the form $6n - 1$.	f bitrarily any	
	iii) Congruence, definition and elementary propertie about linear congruence equations. Examples.	es, Results	
	Functions, Relations and Binary Operations		
	(Prerequisites: Definition of relation and function co-domain and range of a function, composite funct injective, surjective, bijective functions, examples)	ı, domain, ions,	
11	 i) Binary operation, properties, examples. Equivaler relation, Equivalence classes, properties such as equivalences classes are either identical or disjoin Definition of partition, every partition gives an ex- relation and vice versa. 	nce two nt, juivalence	12

		 ii) Congruence is an equivalence relation on Z, Residue classes and partition of Z, Addition modulo n, Multiplication modulo n, examples.
		Direct image $f(A)$ and inverse image $f^{-1}(B)$ for a function f, Composite of injective, surjective, bijective functions when defined, invertible functions, bijective functions are invertible and conversely, examples of functions including constant, identity, projection, inclusion, Binary operation as a function.
Textb	ooks:	
•	David M. Bu (India) Priva	arton, Elementary Number Theory, Seventh Edition, McGraw Hill Education ate Ltd.
• Additi	Norman L. E Ional Referen	Biggs, Discrete Mathematics, Revised Edition, Clarendon Press, Oxford 1989
•	I. Niven and Eastern, Ne	S. Zuckerman, Introduction to the theory of numbers, Third Edition, Wiley w Delhi, 1972.
•	G. Birkoff an York, 1965.	nd S. Maclane, A Survey of Modern Algebra, Third Edition, Mac Millan, New

• N. S. Gopalkrishnan, University Algebra, Ne Age International Ltd, Reprint 2013.

Course Code		MAJOR SEM – I – Practical	Credits	Lectures /Week
K23USMATM	JP11	Practical (Paper I + Paper II)	2	4
			-	
Course Outco	omes:			
After successf	ul com	ipletion of this course, students would be able to	c	
• Apply subsec	variou quence	as properties of real numbers, standard theore s	ms of sequ	lences and
• Solve theore:	proble ms .	ms of divisibility, congruences by employing su	uitable algo	rithms and
 Analyz 	e and	solve the problems based on the syllabus.		
• Relate	mathe	ematics and its applications in pure and applied sc	ences.	
Paper I				
1	Algeb	raic and Order Properties of Real Numbers and Ine	qualities	
2	2 AM-GM inequality, Cauchy-Schwarz inequality, Interior point, Limit point.			
3	Haus	dorff Property and LUB Axiom of R, Archimedia	n Property	
4	Conve	ergence and divergence of sequences, bounded sequence	s, Divergent s	sequence.
5	Algeb	ra of Convergent sequences, Sandwich Theorem.		
6	Cauch	ny sequences, monotonic sequences, non-monotonic sequences,	iences.	
7	Misce	ellaneous Theoretical Questions based on full paper	•	
Paper II				
1	Divisi of two	ion Algorithm, Euclidean algorithm in Z, Examples o non zero integers a&b as ma + nb for some m, n	on expressi ≣ Z,	ng the gcd.
2	Prime exists	es and the Fundamental theorem of Arithmetic, Eu s infinitely many primes of the form 4n – 1 or of the	clid's lemma e form 6n –	, there 1
3	Cong	ruence, linear congruence equations.		
4	Binar	y Operation, Equivalence Relations, Partition and	Equivalence	classes
5	Cong Multi	ruence , Residue classes , partition of Z, Addition plication modulo n,	modulo n,	
6	Biject	tive and Invertible functions, Compositions of functions	ions.	
7	Misce	ellaneous Theoretical Questions based on full pape	•	

Course Code	VOCATIONAL SKILL COURSE SEM – I	Credits	Lectures /Week
K23USMATVC141	Paper I : - Advanced Excel	2	2
Course Outcomes:			
After successful con	mpletion of this course, students would be able to		
• List large ar	nount of data and apply various functions on it.		
• Manipulates seek,etc.	s data list using outline, auto filter, pivot tables , s	cenario ma	nager, goal
Choose adva	anced functions and productivity tools in developing	worksheets	•
• Construct f	ormulas , including the use of built in functions.		
Unit	Topics		No of Lectures
			Dectures
	Spreadsheet	6 4.	
	a) Creating and Navigating worksneets and adding in to workshoots	niormation	
	i) Types of data entering different types of data suc	h as texts	
	numbers, dates, functions.	in us texts,	
	ii) Quick way to add data Auto complete, Autocorrect, Au	to fill, Auto	
	fit. Undo and Redo.		
	iii) Moving data, contiguous and non contiguous selection	s, Selecting	
	with keyboard. Cut-Copy, Paste. Adding and moving	columns or	
	rows. Inserting columns and rows.		
	1v) Find and replace values. Spell check.	D 1	
I	v) Formatting cells, Numbers, Date, Times, Font, Color	rs, Borders,	15
	FIIIS. b) Multiple Spreadsheets		
	i) Adding, removing, hiding and renaming worksheets.		
	ii) Add headers/Footers to a Workbook. Page breaks, prev	view.	
	iii) Creating formulas, inserting functions, cell references	s, Absolute,	
	Relative (within a worksheet, other worksheets	and other	
	workbooks).		
	c) Functions		
	i) Financial functions: FV, PV, PMT, PPMT, IPMT, NP	ER, RATE,	
	NPV, IKK		
	ROUNDED CEILING ELOOR INT MAX MIN MU	אשטעעא. דערא תר	
		JD, SQN1,	

	 ABS, AVERAGE. d) Data Analysis i) Sorting, Subtotal. ii) Pivot Tables- Building Pivot Tables, Pivot Table regions, Rearranging Pivot Table. Advanced Spreadsheet a) Multiple Spreadsheets i) Creating and using templates. ii) Creating and Linking Multiple Spreadsheets. iii) Using formulas and logical operators. iv) Creating formulas that use reference to cells in different worksheets. b) Functions 	
	ii) Pivot Tables- Building Pivot Tables, Pivot Table regions,	
	Rearranging Pivot Table.	
II	 Advanced Spreadsheet a) Multiple Spreadsheets i) Creating and using templates. ii) Creating and Linking Multiple Spreadsheets. iii) Using formulas and logical operators. iv) Creating and using named ranges. v) Creating formulas that use reference to cells in different worksheets. b) Functions i) Database Functions LOOKUP, VLOOKUP, HLOOKUP ii) Conditional Logic functions IF, COUNTIF, SUMIF, AVERAGEIF, NESTED IF. iii) String functions LEFT, RIGHT, MID, LEN, UPPER, LOWER, PROPER, TRIM. iv) Date functions TODAY, NOW, DATE, TIME, DAY, MONTH, YEAR, WEEKDAY, DAYS360. v) Statistical Functions COUNTA, COUNTBLANK, CORREL, LARGE, SMALL. c) Data Analysis i) Filter with customized condition. ii) Using Scenarios, creating and managing a scenario. iv) Using Solver. vi) Understanding Macros, Creating, Recording and Running Simple Macros. Editing a Macro(Concept only). 	15
I EXTDOOKS:		

- Computer system and applications by Dr. Faiyaz Gadiwala, Mukesh N. Tekwani, Sheth publishers PVT LTD. •
- Computer system and applications by Dr. Verus D'Sa, Manan Prakashan. Additional References:

- Micosoft Office Excel by Torben Lage Frandsen. ٠
- Excel Fundamentals by St. George's University of London.

Course Code	MAJOR SEM – II	Credits	Lectures /Week
K23USMATMJ211	Paper I : - Calculus – II	2	2
Course Outcomes:			
After successful con	mpletion of this course, students would be able to		
 Define limi properties. 	t, continuity , differentiability and extreme values of	f a function	n and their
 Explain li functions ar 	mits, continuity and differentiability of function nd solve related examples.	dentify dis	continuous
 Apply variou differentiation 	as properties of limits, continuity, differentiability of a on of functions to solve related problems.	a function a	and implicit
Examine lin	nit , continuity and differentiability of various function	ons	
Unit	Topics		No of Lectures
	Limits and Continuity		
	{Brief review: Domain and range of a function, injec function, surjective function, bijective function, com two functions (when defined), Inverse of a bijective f Graphs of some standard functions such as $ x $, e^x ,	tive posite of unction.	
	$\log x$, $ax^2 + bx + c$, $\frac{1}{x'}$, $x^n n \ge 3$, $\sin x$, $\cos x$, $\tan x$, $\sin x$	$n\left(\frac{1}{x}\right),$	
	$x^{2}\sin\left(\frac{1}{x}\right)$ over suitable intervals of R. No direct ques be added. }	tions to	
I	i) $\varepsilon - \delta$ definition of Limit of a function, uniquene if it exists, algebra of limits, limits of composite func- sandwich theorem, left-hand-limit $f(x)$, right-hand- f(x), non-existence of limits, $f(x)$, $f(x)$, $f(x)$,	ss of limit ction, 1-limit = ± ∞.	15
	ii) Continuous functions: Continuity of a real value function at a point and on a set using $\varepsilon - \delta$ definition examples, Continuity of a real valued function at en- of domain using $\varepsilon - \delta$ definition, f is continuous at a only if $f(x)$ exists and equals to f(a), Sequential con- Algebra of continuous functions, discontinuous fun- examples of removable and essential discontinuity.	ed n, d points if and tinuity, ctions,	
	iii) Intermediate Value theorem and its applications Weierstrass theorem (statement only): A continuou on a closed and bounded interval is bounded and	s, Bolzano- s function attains its	

	bounds.	
Π	 Differentiability of functions and Mean Value Theorems i) Differentiation of real valued function of one variable: Definition of differentiability of a function at a point of an open interval, examples of differentiable and non differentiable functions, differentiable functions are continuous but not conversely, algebra of differentiable functions.' ii) Chain rule, Higher order derivatives, Leibniz rule, Derivative of inverse functions, Implicit differentiation (only examples) iii) Rolle's Theorem, Lagrange's and Cauchy's Mean Value Theorems, applications and examples, Monotone increasing and decreasing functions, examples. 	15
Textbooks:		

- R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- James Stewart, Calculus, Third Edition, Brooks/ Cole Publishing company, 1994.
- T. M. Apostol, Calculus, Vol I, Wiley And Sons (Asia) Pte. Ltd
- Sudhir Ghorpade and Balmohan Limaye, A course in Calculus and Real Analysis, Springer International Ltd, 2000.

- Richard Courant and Fritz John, A Introduction to Calculus and Analysis, Volume-I, Springer.
- Ajit Kumar and S. Kumaresan, A Basic course in Real Analysis, CRC Press, 2014.
- K. G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.
- G. B. Thomas, Calculus, 12th Edition 2009

Course Code	MAJOR SEM – II	Credits	Lectures /Week
K23USMATMJ212	Paper II : - Discrete Mathematics	2	2
 Course Outcomes: After successful completion of this course, students would be able to Recall and define basic concepts of counting principles . Explain various counting principles , Binomial Identities to solve different problems Apply pigeonhole principle ,Inclusion-Exclusion Principle to solve combinatorial problem Examine countable and uncountable sets, various counting principals and solve related problems. 			
Unit	Topics		No of Lectures
I	 Preliminary Counting i) Finite and infinite sets, countable and uncountexamples such as N, Z, N × N, Q,(0, 1), R. ii) Addition and multiplication Principle, counting set two ways counting. iii) Pigeonhole principle simple and strong form and its applications to geometry. 	table sets ts of pairs, examples,	15
П	 Advanced Counting i) Permutation and combination of sets and a circular permutations, emphasis on solving problem ii) Binomial and Multinomial Theorem, Pascal examples of standard identities such as the follo emphasis on combinatorial proofs iii) Non-negative integer solutions of equation x1 + xk = n. iv) Principal of inclusion and exclusion, its ap derangements, explicit formula for dn, deriving for Euler's function φ(n). 	multi-sets, ns. identity, wing with $x^2 + \cdots +$ plications, ormula for	15

Textbooks:

- Norman Biggs, Discrete Mathematics, Oxford University Press.
- V. Krishnamurthy, Combinatorics-Theory and Applications, Affiliated East West Press.
- Discrete Mathematics and its Applications, Tata McGraw Hills.
- Sharad Sane, Combinatorial Techniques, Springer

Additional References:

- Schaum's outline series, Discrete mathematics,
- Allen Tucker, Applied Combinatorics, John Wiley and Sons.
- Richard Brualdi, Introductory Combinatorics, John Wiley and sons.

Course Code	SEM II - Mathematics	Credits	Lectures/ Week
K23USMATMJP21	Practical (Paper I + Paper II)	2	4

Course Outcomes:

After successful completion of this course, students would be able to

- Apply various properties of limits, continuity, differentiability of a function and implicit differentiation of functions to solve related problems.
- Apply pigeonhole principle, Inclusion-Exclusion Principle to solve combinatorial problems.
- Equip skills to Analyze problems , evaluate and draw the reasonable conclusions thereof.
- Relate and apply concepts of mathematics in related disciplines.

Paper I		
1	Limit of a function and Sandwich theorem, Continuous and discontinuous function.	
2	Algebra of limits and continuous functions, Intermediate Value theorem, Bolzano Weierstrass theorem.	
3	Properties of differentiable functions, derivatives of inverse functions and implicit functions.	
4	Chain Rule, Higher order derivatives	
5	Leibnitz Rule, Derivative of inverse functions, Implicit differentiation.	
6	Mean value theorems and its applications	
7	Miscellaneous Theoretical Questions based on full paper.	
Paper II		
1	Finite and infinite sets, countable and uncountable sets	
2	Counting principles, Two way counting.	
3	Pigeon hole principle.	
4	Multinomial theorem, identities, permutation and combination of multi-set.	
5	Non-negative integer solutions of equation $x1 + x2 + \cdots + xk = n$.	
6	Inclusion-Exclusion principle. Euler phi function.	
7	Miscellaneous Theoretical Questions based on full paper	

Course Code	MINOR SEM – II	Credits	Lectures /Week	
K23USMATMR221	Paper I : - First Order Differential Equations	2	2	
Course Outcomes: After successful completion of this course, students would be able to				
Define different equations with	tial equations their order, degree, Exact and r Integrating factors.	ion-exact	differential	
Identify various	types of differential equations.			
• Solve exact diffe	erential equations.			
• Examine first or and population s	rder differential equations to model problems of photoens.	ysics, engir	neering	
Unit	Topics		No of Lectures	
Ι	First order First degree Differential equations Definition of a differential equation, Order, degree, Ordinary differential equation and Partial differential equation, Linear and non-linear ODE. Solution of homogeneous and non-homogeneous differential equations of first order and first degree. Notion of partial derivatives. i) Exact Equations: General solution of Exact equations of first order and first degree. Necessary and sufficient condition for $Mx + Ny = 0$ to be exact. Non-exact equations: Rules for finding integrating factors (without proof) for non-exact equations, such as 1) $\frac{1}{Mx+Ny}$ is and I.F if $Mx - Ny \neq 0$ and $Mx + Ny = 0$ is homogeneous. 2) $\frac{1}{Mx-Ny}$ is and I.F if $Mx - Ny \neq 0$ and $Mx + Ny = 0$ is of the form $f_1(x, y)y dx + f_2(x, y)x dy = 0$. $e^{\int f(x) dx} (resp e^{\int g(y) dy})$ is an I.F. if $N \neq 0$ (resp $M \neq 0$) and $\frac{1}{N} (\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}) (resp \frac{1}{M} (\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}))$ is a function of x (resp y) alone, say f(x) (resp g(y)).		15	
Ш	Applications of First order Linear Differential E Linear and reducible linear equations of first ord solutions of first order differential equations of the applications to orthogonal trajectories, population and finding the current at a given time.	quations er, finding he type for on growth,	15	

Textbooks:

- G. F. Simmons, Differential Equations with Applications and Historical Notes, McGraw Hill, 1972.
- E. A. Coddington , An Introduction to Ordinary Differential Equations.Prentice Hall, 1961.

- D. A. Murray, Introductory Course in Differential Equations, Longmans, Green and Co., 1897.
 - A. R. Forsyth, A Treatise on Differential Equations, MacMillan and Co., 1956

Course Code	VOCATIONAL SKILL COURSE SEM – II	Credits	Lectures /Week
K23USMATVC241	Paper I : - SQL and Extension	2	2
		I	I
Course Outcomes			
After successful co	mpletion of this course, students would be able to		
 Describe da using loops 	tabase, entity relational model, conditional statement	s and iterat	ion method
 Discuss var 	ious functions and clauses in SQL.		
 Write comp making. 	lex SQL queries to retrieve information from databa	se to suppo	ort decision
Apply DDL drop objects	and DML commands in SQL to insert, update, deles within a relational database.	te, create,	modify and
Unit	Topics		No of
Ome			Lectures
	RELATIONAL DATA BASE MANAGEMENT SYSTE	M	
	1. Introduction to Data base Concepts: Database	, Overview	
	of data base management system. Data base Langu	ages- Data	
	Definition Languages (DDL) and Data Manipulation	Languages	
	2. Entity Relation Model: Entity, artibutes, keys,	relations.	
	Designing ER diagram, integrity Constraints over	relations,	
	conversion of ER to relations with and without cons	trains.	
	3. SQL Commands and functions		
	a) Creating and altering tables: CREATE stater	ment with	
_	constraints like KEY, CHECK, DEFAULT, ALTER a	and DROP	
I	statement.		15
	b) Handling data using SQL: selecting data using	g SELECT	
	Statement, FROM clause, WHERE clause, HAVIN	G clause,	
	data with INSERT statement changing data with	UPDATE	
	statement removing data with DFI FTF statement	I UPDAIE	
	c) Functions: Aggregate functions- AVG SUM MIN	MAX and	
	COUNT, Date functions- ADD MONTHS/I. CURREN	T DATE().	
	LAST_DAY(), MONTHS BETWEEN(), NEXT DAY	(). String	
	functions- LOWER(), UPPER(), LTRIN(), RTRIM	(), TRIN(),	
	INSERT(), RIGHT(), LEFT(), LENGTH(), SUBSTR()	. Numeric	
	functions: ABS(), EXP(), LOG(), SQRT(), POWER	(), SIGN(),	

	ROUND(number). d) Joining tables: Inner, outer and cross joins, union.	
II	 INTRODUCTION TO PL/SQL 1. Fundamentals of PL/SQL: Defining variables and constants, PL/SQL expressions and comparisons: Logical Operators, Boolean Expressions, CASE Expressions Handling, Null Values in Comparisons and Conditional Statements, 2. PL/SQL Data Types: Number Types, Character Types, Boolean Type. Date time and Interval types. 3. Overview of PL/SQL Control Structures: Conditional Control: IF and CASE Statements, IF-THEN Statement, IF-THEN-ELSE Statement, IF-THEN-ELSIF Statement, CASE Statement, 4. Iterative Control: LOOP and EXIT Statements, WHILE-LOOP, FOR-LOOP, Sequential Control: GOTO and NULL Statements. 	15

Textbooks:

- Data base management system, RamKrishnam, Gehrke, McGraw-Hill
- Ivan Bayross, "SQL, PL/SQL The Programming languages of Oracle" B.P.B. Publications, 3rd Revised Edition.
- George Koch and Kevin Loney, ORACLE "The complete Reference", Tata McGraw Hill, New Delhi.

- Elsmasri and Navathe, "Fundamentals of Database Systems" Pearson Education.
- Peter Roband Coronel, "Database System, Design, Implementation and Management", Thomson Learning.
- C.J. Date, Longman, "Introduction database system", Pearson Education.
- Jeffrey D. Ullman, Jennifer Widsom, "A First Course in Database Systems", Pearson Education. 8.Martin Gruber, "Understanding SQL", B.P.B. Publications.

Evaluation Scheme for First Year (UG) under NEP (2 credits)

I. Internal Evaluation for Theory Courses – 20 Marks

<u>1) Continuous Internal Assessment (CIA)</u> Assignment - Tutorial/ Case Study/ Project / Presentations/ Group Discussion / Ind. Visit. – 10 marks

2) Continuous Internal Assessment (CIA) ONLINE Unit Test – 10 marks

II. External Examination for Theory Courses – 30 Marks

Duration: 1 Hours

Theory question paper pattern: All questions are compulsory.

Question	Based on	Marks
Q.1	Unit I	15
Q.2	Unit II	15

- All questions shall be compulsory with internal choice within the questions.
- Each Question may be sub-divided into sub questions as a, b, c, d, etc. & the allocation of Marks depends on the weightage of the topic.

III. Practical Examination

- Each core subject carries 50 Marks.
- Duration: 2 Hours for each practical course.
- Minimum 80% practical from each core subjects are required to be completed.
- Certified Journal is compulsory for appearing at the time of Practical Exam

NOTE: To pass the examination, attendance is compulsory in both Internal & External (Theory + Practical) Examinations.