		Semester – I		
Course Code	Course Type	Course Title	Credits	Lectures/Week
USBT101	Core Subject	Basic Chemistry-I	2	3
USBT102	Core Subject	Basic Chemistry-II	2	3
USBT103	Core Subject	Basic Life Sciences-I : Biodiversity and Cell Biology	2	3
USBT104	Core Subject	Basic Life Sciences-II : Microbial Techniques	2	3
USBT105	Core Subject	Basic Biotechnology-I : Introduction to Biotechnology	2	3
USBT106	Core Subject	Basic Biotechnology-II : Molecular Biology	2	3
USBT107	Ability Enhancement Course 1 (FC I)	Societal Awareness	2	3
USBTP101, USBTP102, USBTP103	Core Subject Practicals	Practicals of USBT101, USBT102, USBT103, USBT104, USBT105 and USBT106	6	18
	I	Semester – II	1	I
Course Code	Course Type	Course Title	Credits	Lectures/Week
USBT201	Core Subject	Chemistry-I : Bioorganic Chemistry	2	3
USBT202	Core Subject	Chemistry-II : Physical Chemistry	2	3
USBT203	Core Subject	Life Sciences-I : Physiology and Ecology	2	3
USBT204	Core Subject	Life Sciences-II : Genetics	2	3
USBT205	Core Subject	Biotechnology-I : Tissue Culture & Scientific Writing and Communication Skills	2	3
USBT206	Core Subject	Biotechnology-II : Enzymology, Immunology and Biostatistics	2	3
USBT207	Ability Enhancement Course 2 (FC II)	Globalization, Ecology and Sustainable Development	2	3
USBTP201, USBTP202, USBTP203	Core Subject Practicals	Practicals of USBT201, USBT202, USBT203, USBT204, USBT205 and USBT206	6	18

SEMESTER – I THEORY

Basic Chemistry-I

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 101	Basic Chemistry I	2	
Course Objective : To aqua	int the students with basic concepts of Chemistyli	ke Classificati	on and
Nomenclature of Chemical co	ompounds		
Learning Outcome : To imp	part hands-on skills in preparation of Bufferes and	Solutions	
~ ^	Nomenclature and Classification of		30 hrs
Unit I	Inorganic Compounds:		
Nomenclature and	Oxides, Salts, Acids, Bases, Ionic,		
Classification	Molecular and Coordination Compounds		
	Nomenclature and Classification of		
	Organic Compounds: Alkanes, Alkenes,		
	Alkynes, Cyclic Hydrocarbons, Aromatic		
	Compounds, Alcohols and Ethers,		
	Aldehydes and Ketones, Carboxylic Acids		
	and its derivatives, Amines, Amides, Alkyl		
	Halides and Heterocylic Compounds		
	Chemical Bonds:	15 Lectures	30 hrs
Unit II	Ionic Bond: Nature of Ionic Bond, Structur		
Chemical Bonds	eof NaCl, KCl and CsCl, factors influencing		
	the formation of Ionic Bond.		
	Covalent Bond: Nature of Covalent Bond, Structure of CH4, NH3, H2O, Shapes of BeCl ₂ , BF3		
	Coordinate Bond: Nature of Coordinate Bond		
	Non Covalent Bonds: Van Der Waal's forces: dipole - dipole, dipole – induced dipole.		
	Hydrogen Bond : Theory of Hydrogen Bonding and Types of Hydrogen Bonding (with examples of RCOOH, ROH, Salicylaldehyde, Amides and Polyamides).		
	Chemistry of Water:	15 lectures	30 hrs
Unit III	Properties of Water, Interaction of Water		
Water and Buffers	with Solutes (Polar, Non-Polar, Charged),		
	Non-Polar Compounds in Water – Change		
	in its Structure and the Hydrophobic Effect,		
	Role of Water in Biomolecular Structure		
	and Function and Water as a Medium for		
	Life		

Solutions : Normality, Molarity, Molality, Mole fraction, Mole concept, Solubility, Weight ratio, Volume ratio, Weight to Volume ratio, ppb, ppm, millimoles, milliequivalents (Numericals expected).	
Primary and Secondary Standards : Preparation of Standard Solutions, Principle of Volumetric Analysis.	
Acids and Bases: Lowry-Bronsted and Lewis Concepts. Strong and Weak Acids and Bases - Ionic Product of Water - <i>pH,pKa, pKb</i> . Hydrolysis of Salts.	
Buffer solutions –Concept of Buffers, Types of Buffers, Derivation of Henderson equation for Acidic and Basic buffers, Buffer action, Buffercapacity(Numericalsexpected.) pH of Buffer Solution.	

Basic Chemistry-II

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBT 102	Basic Chemistry II	2	
o 1	students with Concepts of Steriochemisty		
	t knowledge of Titrimetic and Volumetric Estir	nations and han	dling of basic
Analytical Techniques like Chr			
	Isomerism – Types of Isomerism:	15 Lectures	30 hrs
Unit I	Constitutional Isomerism (Chain, Position		
Stereochemistry	and Functional) and Stereoisomerism,		
	Chirality.		
	Geometric Isomerism and Optical		
	Isomerism: Enantiomers, Diastereomers,		
	and Racemic mixtures Cis-Trans, Threo,		
	Erythro and Meso isomers.Diastereomerism		
	(Cis-Trans Isomerism) in Alkenes and		
	Cycloalkanes (3 and 4 membered ring)		
	Conformation: Conformations of Ethane.		
	Difference between Configuration and		
	Conformation.		
	Configuration, Asymmetric Carbon Atom,		
	Stereogenic/ Chiral Centers, Chirality,		<u> </u>

	Representation of Configuration by "Flying Wedge Formula"		
	Projection formulae – Fischer, Newman and Sawhorse. The Interconversion of the Formulae.		
Unit II Titrimetry and Gravimetry	Titrimetric Analysis : Titration, Titrant, Titrand, End Point, Equivalence Point, Titration Error, Indicator, Primary and Secondary Standards, Characteristics and examples	15 Lectures	30 hrs
	Types of Titration –Acid –Base, Redox. Precipitation, Complexometric Titration. Acid – Base TitrationStrong Acid Vs Strong Base -Theoretical aspects of Titration Curve and End Point Evaluation. Theory of Acid –Base Indicators, Choice and Suitability of Indicators.		
	Gravimetric Analysis: Solubility and Precipitation, Factors affecting Solubility, Nucleation, Particle Size, Crystal Growth, Colloidal State, Ageing/Digestion of Precipitate. Co-Precipitation and Post-Precipitation. Washing, Drying and Ignition of Precipitate. (Numericals Expected).		
Unit III Analytical Techniques	Methods of SeperationPrecipitation, Filtration, Distillation andSolvent Extraction.Analytical TechniquesChromatography:Definition, Principles, TypesIntroduction to Paper Chromatography,Thin Layer Chromatography, ColumnChromatographyanditsApplications. Colorimetry:Principle,Beer-Lambert'sLaw,Measurement of Extinction, Derivation ofE=kcl,LimitationsofE=kcl,LimitationsofBeer-Lambart'sLaw,Filter Selection	15 Lectures	30 hrs

Basic Life Sciences-I : Biodiversity and Cell Biology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 103	Biodiversity and Cell Biology	2	
Course Objectives : To aquint	students with concept of Biodiversity and	Cell Biology	
Learning Outcome : To impai	rt skill in handling and culture of Microorg	anisms	
Unit I Origin of Life and	Origin of Life, Chemical and Biological Evolution, Origin of Eukaryotic Cell.	15Lectures	30 hrs
Biodiversity	Concept of Biodiversity, Taxonomical,		
(Animal,Plant, Microorganisms)	Ecological and Genetic Diversity & its Significance		
	Introduction to Plant Diversity: Algae, Fungi, Bryophyta, Pteridophyta, Gymnosperms and Angiosperms (with one example each)		
	Introduction to Animal Diversity: Non-Chordates and Chordates { with at least one representative example.)		
	Introduction to Microbial Diversity Archaebacteria, Eubacteria, Blue-green Algae, Actinomycetes, Eumycota- Habitats, Examples and Applications.		
Unit II Ultra Structure of Prokaryotic and Eukaryotic Cell.	Ultrastructure of Prokaryotic Cell: Concept of Cell Shape and Size.Detail Structure of Slime Layer, Capsule, Flagella, Pilli, Cell Wall(Gram Positive and Negative), Cell Membrane, Cytoplasm and Genetic Material Storage Bodies and Spores	15Lectures	30 hrs
	Ultrastructure of Eukaryotic Cell: Plasma membrane, Cytoplasmic Matrix, Microfilaments, Intermediate Filaments, and Microtubules Organelles of the Biosynthetic- Endoplasmic Reticulum & Golgi Apparatus. Lysosome, Endocytosis, Phagocytosis, Autophagy, Proteasome Eucaryotic Ribosomes, Mitochondria		

	Nucleus –Nuclear Structure, Nucleolus External Cell Coverings: Cilia And Flagella Comparison of Prokaryotic And Eukaryotic Cells		
Unit III Bacteria and Viruses	 Bacteria : Classification, Types, Morphology (Size, Shape and Arrangement) Cultivation of Bacteria. Reproduction and Growth (Binary Fission, Conjugation and Endospore formation) Growth Kinetics, Isolation and Preservation. Significance of Bacteria Viruses :General Characters, Classification (Plant, Animal and Bacterial Viruses) Structure and Characterization of Viruses and Significance 	15Lectures	30 hrs

Basic Life Sciences-II : Microbial Techniques

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 104	Microbial Techniques	2	
v 1	nt students with basic techniques in Staining	0	ation
Learning Outcome : To impar	t the knowledge of growth of microorganis	ms	
	Microscopy and Stains	15 lectures	30 hrs
Unit I	Microscope- Simple and Compound:		
Microscopy and Stains	Principle. Parts, Functions and Applications.		
	Dark Field and Phase Contrast Microscope Stains and Staining Solutions- Definition of Dye and Chromogen. Structure of Dye and Chromophore. Functions of Mordant and Fixative. Natural and Synthetic Dyes. Simple Staining, Differential Staining and Acid Fast Staining with specific examples		
Unit II Sterilization Techniques	Definition : Sterilization and Disinfection. Types and Applications Dry Heat, Steam under pressure,	15 lectures	30 hrs

	Gases, Radiation and Filteration Chemical Agents and their Mode of		
	Action - Aldehydes, Halogens,		
	Quaternary Ammonium Compounds,		
	Phenol and Phenolic Compounds,		
	Heavy Metals, Alcohol, Dyes, and		
	Detergents		
	Ideal Disinfectant. Examples of		
	Disinfectants and Evaluation of		
	Disinfectant		
	Nutrition and Cultivation of	15 lectures	30 hrs
Unit III	Microorganisms		
Nutrition, Cultivation and	Nutritional Requirements : Carbon,		
Enumeration of	Oxygen, Hydrogen, Nitrogen,		
Microorganisms	Phosphorus, Sulphur and Growth		
	Factors.		
	Classification of Different Nutritional		
	Trypes of Organisms.		
	Design and Types of Culture Media.		
	Simple Medium, Differential, Selective		
	and Enrichem Media		
	Concept of Isolation and Methods of		
	Isolation. Pure Culture Techniques		
	Growth and Enumeration Growth Phases, Growth Curve.		
	Arithmatic Growth and Growth Yield.		
	Measurement of Growth. Chemostat		
	and Turbidostat		
	Enumeration of Microorganisms- Direct		
	and Indirect Methods		
	Preservation of Cultures- Principle and		
	Methods. Cryogenic Preservation		
	Advantages and Limitations		

Basic Biotechnology-I : Introduction to Biotechnology

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBT 105	Introduction to Biotechnology	2	
Corse Objectives : To auaint s	tudents with various fields of Biotechnolog	gy and their a	pplications
Learining Outcome : To impa	rt the knowledge of Food Technology and	Fermetation 7	Techniques
	History & Introduction toBiotechnology	15 lectures	30 hrs
Unit I	What is Biotechnology?		
Scope and Introduction to	Definition of Biotechnology,		
Biotechnology	Traditional and Modern Biotechnology,		
	Branches of Biotechnology-		

	Plant, Animal Biotechnology, Marine Biotechnology, Agriculture, Healthcare, Industrial Biotechnology, Pharmaceuti cal Biotechnology, Environmental Biotechnology. Biotechnology Research in India. Biotechnology Institutions in India (Pub lic and Private Sector) Biotech Suceess Stories Biotech Policy Initiatives Biotechnology in context of Developing World Public Perception of Biotechnology		
Unit II Applications Biotechnology	Applications of Biotechnology in Agriculture : GM Food, GM Papaya, GM Tomato, Fungal and Insect Resistant Plants BT Crops, BT Cotton and BT Brinjal Pros and Cons Biotechnological applications in Crop and Livestock Improvements Modifications in Plant Quality Golden Rice, Molecular Pharming, Plant Based Vaccines Ethics in Biotechnology and IPR	15 lectures	30 hrs
Unit III Food and Fermentation Biotechnology	Food Biotechnology Biotechnological applicationsin enhancement of Food Quality Unit Operation in Food Processing Quality Factors in Preprocessed Food Food Deterioration and its Control Rheology of Food Products Microbial role in food products Yeast, Bacterial and other Microorganisms based process and products Modern Biotechnological Regulatory Aspects in Food Industries Biotechnology and Food - Social Appraisal Fermentation Technology Defination, Applications of Fermetation Technology Microbial Fermentations Overview of Industrial Production of Chemicals (Acetic Acid, Citric Acid and Ethanol), Antibiotics, Enzymes and Beverages	15 lectures	30 hrs

Basic Biotechnology-II : Molecular Biology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 106	Molecular Biology	2	
Corse Objectives : To aquin	t students with DNA Replication, Repair and	l Genetic Eng	ineering
Learning Outcome :Impart	he knowledge of molecular Biology Technic	ques	-
	DNA Replication in Prokaryotes and	15 lectures	30 hrs
Unit I	Eukaryotes-		
Replication	Semi-conservative DNA replication,		
-	DNA Polymerases and its role,		
	E.coli Chromosome Replication,		
	BidirectionalReplication of Circular		
	DNA molecules.		
	Rolling Circle Replication, DNA		
	Replication in Eukaryotes		
	DNA Recombination –		
	Holliday Model for Recombination		
	Transformation		
	Definition and Types of Mutations.	15 lectures	30 hrs
Unit II	Mutagenesis and Mutagens.(Examples		
Mutation and DNA Repair			
-	Mutagens)		
	Types of Point Mutations,		
	DNA REPAIR		
	Photoreversal, Base Excision Repair,		
	Nucleotide Excision Repair, Mismatch		
	Repair, SOS Repair and Recombination		
	Repair.		
	Experimental evidences for DNA and	15 lectures	30 hrs
Unit III	RNA as Genetic Material.	10 footares	201115
Genetic Engineering	Genetic Engineering in Ecoli and other		
	Prokaryotes, Yeast, Fungi and		
	Mammalian Cells		
	Cloning Vectors-Plasmids (pBR 322,		
	pUC)		
	Vectors for Plant and Animal Cells,		
	Shuttle Vectors, YAC Vectors,		
	Expression Vectors		
	Enzymes- DNA Polymerases,		
	Restriction Endonucleases, Ligases,		
	Reverse Transcriptases, Nucleases,		
	Terminal Transferases, Phosphatases		
	Isolation and Purification of DNA		
	(Genomic, Plasmid) and RNA,		
	Identification of Recombinant Clones		

Semester – I

Practicals

SEMESTER – I Practicals Basic Chemistry

COURSE CODE	TITLE	CREDITS	Notional
USBTP 101	Basic Chemistry	2	Hours 30 hrs
	actices in Chemistry Laboratory, Working	=	
	rdization of <i>pH</i> Meter, Optical Activity of		-
Polarimeter	reization of pri victor, optical retricty of	u chenneur c	ompounds by
	(Molar, Molal and Normal solutions) and	Buffer Solutio	ons
-	th of HCl in commercial sample	Durier Solution	0115
-	Inorganic Compounds - Three experiments	e e	
-	anic Compounds containing only C, H, O		element test) -
	to the following classes: Carboxylic Acid,	,	,
1 0 0	arbon and Characterization of Organic Cor		•
	s (element tests to be done) Compounds be	1	0
	· · · · ·	00	lonowing
	Nitro Compounds, Thiamide, Haloalkane,		othelate) and
sample of HCl using bo	rcial sample of NaOH using KHP (Potassiu rax.	im nydrogen j	pinalate) and
6. Dissociation Constant of	of Weak Acids by Incomplete Titration Met	thod using <i>pH</i>	Meterand
determination of Acetic	acid in Vinegar by Titrimetric Method		
7. Determination of the an	nount of Fe (II) present in the given solution	n Titrimetrica	ılly
8. Determination of amou	nt of NaHCO3 + Na2CO3 in the given soli	d mixture Tit	rimetrcially
9. Determination of the an	nount of Mg (II) present in the given soluti	on complexor	netrically
10. Determination of percent	nt composition of BaSO4 and NH4Cl in the	e given mixtu	re
Gravimetrically		C	
	d Fe using Paper Chromatographyand ami	no acids - pap	er
chromatography		1 1	

12. Determination of fluoride ion using Colorimetry and Fe (III) by using Salicylic Acid by Colorimetric Titration

	SEMESTER – I		
	Practicals		
	Basic Life Sciences		
COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBTP 102	Basic Life Science	2	30 hrs
1. Components and workin	gof Simple, Compound, Dark Field, Flu	orescent and Ph	ase Contrast
Microscope			
2. Staining of Plant and An	imal Tissues using Single and Double S	taining Techniq	ues
3. Special Staining Technic	que for Cell Wall, Capsule and Endospor	res and Fungal S	Staining
4. Monochrome Staining, I	Differential Staining, Gram Staining, and	l Acid Fast Stair	ning and
Romonowsky Staining			-
5. Study of Plant, Animal a	and Microbial Groups with at least one e	xamples from ea	ach x 3
6. Study of Photomicrograp	phs of Cell Organelles	-	
7. Sterilization of Laborato	ry Glassware and Media using Autoclav	re	
8. Preparation of Media- N	utrient broth and Agar, MacConkey Aga	ar, Sabourauds	Agar
9. Isolation of Organisms :	T-streak, Polygon method		
			.1 1

- 10. Enumeration of microorganisms by Serial Dilution, Pour Plate, Spread Plate Method
- 11. Colony Characteristics of Microorganisms, Enumeration by Breed's count
- 12. Growth Curve of <u>E.Coli</u>

SEMESTER – I Practicals Basic Biotechnology

COURSE CODE	TITLE	CREDITS	Notional Hours
USBTP 103	Basic Biotechnology	2	30 hrs
1. Assignment- Study of any	branch of biotechnology and its applications		
2. Microbial examination	of food and detection of Pathogenic Bacte	ria from Food	l Samples
3. Isolation of organisms c	ausing Food Spoilage		
4. Microscopic determinat	ion of Microbial flora from Yoghurt and L	actic Acid De	etermination
5. Analysis of Milk- Meth	ylene Blue, Resazurin Test, Phosphatase T	est	
6. Extraction of Caesin from Milk			
7. Meat Tenderization using Papain			
8. Fermentative production of Alcohol			
9. Determination of Alcohol content			
10. Isolation and purification of DNA (genomic, plasmid)			
11. Restriction Digestion			
12. Agarose Gel Electropho	presis of the genomic and plasmid DNA		
Č I			

SEMESTER – II THEORY

Chemistry-I : Bioorganic Chemistry

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 201	Bioorganic Chemistry	2	
Course Objectives : To aquin	t students with Bioorganic Molecules		
	rt the knowledge of Classification, Strucu	re and Charac	terization of
Biomolecules			
	Carbohydrates: Structure, Function,	15 lectures	30 hrs
Unit I	Classification, Characteristic		
Biomolecules:	Reactions, Physical and Chemical		
Carbohydrates and Lipids	Properties, D & L Glyceraldehydes,		
	structure of Monosaccharide,		
	Disaccharides, and Polysaccharides.		
	Isomers of Monosaccharides,		
	Chemical/Physical Properties of		
	Carbohydrate, Chemical Reactions for		
	Detection of Mono., Di and		
	Polysaccharides,		
	Lipids:Classification of Lipids,		
	Properties of Saturated, Unsaturated		
	Fatty Acids, Rancidity, and		
	Hydrogenation of Oils		
	Phospholipids: Lecithin Cephalin,		
	Plasmalogen		
	Triacylglycerol-Structure and Functio		
	n		
	Sterols: Cholesterol: Structure and Fu		
	nction, Lipoproteins: Structure and Fu		
	nction, Storage Lipids, Structural Lipi		
	ds, Action of Phospholipases, Steroids		
	Proteins and Amino Acids:	15 lectures	30 hrs
Unit II	Classification, Preparation and Propert		
Biomolecules:	ies, Isoelectric Point, Peptide Synthesi		
Proteins and Amino Acids	S		
	Proteins: Classification based on Struc		
	ture and Functions, Primary Structure,		
	N-terminal (Sanger and Edmans Meth		
	od) and C-terminal Analysis (Enzyme)		
	Reactions of Amino Acids, Sorenson'		
	s Titration, Ninhydrin Test.		
	Denaturation of protein Structure of		
	Peptides.		
	Titration Curve of Amino Acids.		
	Concept of Isoelectric pH, Zwitter ion.		
	Glycoproteins		
	Nucleic Acids: Structure, Function of	15 lectures	30 hrs
Unit III	Nucleic Acids, Properties and Typesof		

Biomolecules:	DNA, RNA. Structure of Purine and	
Nucleic Acids	Pyrimidine Bases Hydrogen Bonding	
	between Nitrogeneous Bases in DNA	
	Differences between DNA and RNA,	
	Structure of Nucleosides, Nucleotides	
	and Polynucleotides.	

Chemistry-II : Physical Chemistry

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 202	Physical Chemistry	2	
Reactions	int students with concepts in Thermodynar art skills in Kinetics and Chemical Reactio		and Redox
Learning Outcome . 10 mp	Thermodynamics:	15 lectures	30 hrs
Unit I	•	15 lectures	50 1118
	System, Surrounding, Boundaries		
Thermodynamics	Sign Conventions, State Functions, Internal Energy and Enthalpy:		
	Significance, examples, (Numericals		
	expected.)		
	Laws of Thermodynamics and its		
	Limitations, Mathematical expression.		
	Qualitative discussion of Carnot Cycle		
	for ideal Gas and Mechanical		
	Efficiency. Laws of Thermodynamics		
	as applied to Biochemical Systems.		
	Concept of Entropy, Entropy for		
	Isobaric, Isochoric and Isothermal		
	Processes.		
	Reaction Kinetics:	15 lectures	30 hrs
Unit II	Rate of Reaction, Rate Constant,		
Chemical Kinetics	Measurement of Reaction Rates Order		
	& Molecularity of Reaction,		
	Integrated Rate Equation of First and		
	Second order reactions (with equal		
	initial concentration of reactants).		
	(Numericals expected)		
	Determination of Order of Reaction		
	by a) Integration Method b) Graphical		
	Method c) Ostwald's Isolation Method		
	d) Half Time Method. (Numericals		
	expected).	151	20.1
T T •4 T T	Principals of Oxidation & Reductio	15 lectures	30 hrs
Unit III Oridation Reduction	n Reactions-		
Oxidation Reduction	Oxidising and Reducing Agents, Oxid		
reactions	ation Number, Bulas to assign Ovidation Numbers wi		
	Rules to assign Oxidation Numbers wi		
	th examples Ions like		

Oxalate, Permanganate and Dichromat	
e. Balancing Redox Reactions by Ion	
Electron Method	
Oxidation, Reduction, Addition and	
Substitution & Elimination Reactions.	

Life Sciences-I : Physiology and Ecology

COURSE CODE		CREDITS	Notional	
			Hours	
USBT 203	Physiology and Ecology	2		
Course Objectives: To aquaint studetns with Physiological Processes in Plants and Animals				
Learning Objectives : To impart the knowledge of Physiology and Ecology				
	Photosynthesis, Intracellular	15 lectures	30 hrs	
Unit I	Organization of Photosynthetic			
Plant Physiology	System. Fundamental Reactions of			
	Photosynthesis, Photosynthetic			
	Pigments, Role of Light. Hill Reaction			
	and its Significance, Light Reactions,			
	Cyclic and Non-Cyclic Photo induced			
	Electron Flow, Energetics of			
	Photosynthesis, Photorespiration,			
	Dark Phase of Photosynthesis, Calvin			
	Cycle, C-3, C-4 pathways			
	Plant hormones - Auxin ,Gibbrellins,			
	Cytokinins, Ethylene, Abscissic acid			
	Introduction to Secondary Metabolites			
	Physiology of Digestion	15 lectures	30 hrs	
Unit II				
Animal Physiology	Movement of Food and Absorption,			
	Secretary functions of Alimentary			
	Canal, Digestion and			
	Absorption, assimilation in Gut of			
	Mammals			
	Anatomy of Mammalian Kidney,			
	Structure of Nephron, Physiology of			
	Urine Formation and Role of Kidney			
	in Excretion and Osmoregulation			
	In Exerction and Osmoregulation			
	Physiology of Respiration,			
	Mechanism of Respiration			
	Principles of Gaseous Exchange in the			
	Blood and Body Fluids			
	-			
	Blood and Circulation : Blood			
	Composition, Structure and Function			
	of its Constituents			

	Blood Coagulation and Anti- Coagulants Hemoglobin and its Polymorphism Regulation of the Circulation Mechanism and working of Heart in Human.		
Unit III Ecosystem and Interactions	Ecology and Biogeography. Ecosystems, Definition and Compone nts, Structure and Function of Ecosystems. Aquatic and Terrestrial Ecosystems, Biotic and Abiotic Factors, Trophic Levels, Food Chain and Food Web, Ecological Pyramids (Energy,Biomass and Number) Nutrient Cycle and Biogeochemical Cycles: Water, Carbon, Oxygen, Nitrogen and Sulphur. Interactions, Commensalism, Mutualism, Predation and Antibiosis, Parasitism.	15 lectures	30 hrs

Life Sciences-II : Genetics

COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBT 204	Genetics	2	
Course Objectives : To aquain	nt students with concepts in Genetics		
Learning Objectives : To imp	art skills in Techniques in Genetic Analys	sis and Popula	ation Genetics
	Mendel's Laws of Heredity	15 lectures	30 hrs
Unit I	Monohybrid Cross: Principle		
Genetics Fundamentals	of Dominance and Segregation.		
	Dihybrid Cross: Principle of		
	Independent Assortment.		
	Application of Mendel's		
	Principles		
	Punnett Square.		
	Mendel's Principle in Human		
	Genetics.		
	Incomplete Dominance and		
	Co-dominance.		
	Multiple Alleles. Allelic series.		
	Variations among the effect of the		
	Mutation.		
	Genotype and Phenotype.		
	Environmental effect on the		
	expression of the Human Genes.		
	Gene Interaction.		
	Epistasis.		

	Genetic analysis in Bacteria- Prototrop	15 lectures	30 hrs
Unit II	hs, Auxotrophs.		
Microbial Genetics	Bacteriophages: Lytic and Lysogenic		
	Development of Phage.		
	Mechanism of Genetic Exchange in		
	Bacteria:		
	Conjugation; Transformation; Transd		
	uction; (Generalized Transduction,		
	Specialized Transduction)		
	Bacterial Transposable Elements.		
	Genetic Structure of Populations –	15 lectures	30 hrs
Unit III	Genotypic Frequencies and Allelic		
Population Genetics	Frequencies,		
	Hardy- Weinberg Law and its		
	assumptions		
	Genetic Variations in Populations-		
	Measuring Genetic Variation at Protei		
	n Level and measuring Genetic		
	Variations at DNA level		
	Natural Selection.		
	Genetic Drift		
	Speciation		
	Role of Population Genetics in		
	Consevation Biology		

Biotechnology-I : Tissue Culture & Scientific Writing and Communication Skills

COURSE CODE	TITLE	CREDI	Notional
		TS	Hours
USBT 205	Tissue Culture & Scientific Writing	2	
	and Communication Skills		
Course Objectives : To aqua	aint students with Techniques of Plant and A	Animal Tis	sue Culture
Learning Outcome : To imp	art the skills of PTC, ATC and Science Cor	nmunicatio	on
	Cell Theory, Concept of Cell Culture,	15	30 hrs
Unit I	Cellular Totipotency,	lectures	
Plant Tissue Culture	Organization of Plant Tissue Culture		
	Laboratory :		
	Equipments and Instruments		
	Aseptic Techniques: Washing of		
	Glassware, Media Sterilization,		
	Aseptic Workstation, Precautions to		
	maintain Aseptic Conditions.		
	Culture Medium: Nutritional		
	requirements of the explants, PGR's and		
	their in-vitro roles, Media Preparation		
	Callus Culture Technique: Introduction,		
	Principle and Protocols		

	Basics of Animal Tissue Culture	15	30 hrs
Unit II	Introduction	lectures	
Animal Tissue Culture	Cell Culture Techniques,		
	Equipment and Sterilization		
	Methodology.		
	Introduction to Animal Cell		
	Cultures:Nutritional and Physiological:		
	Growth Factors and Growth		
	Parameters. General Metabolism and		
	Growth Kinetics		
	Primary Cell Cultures : Establishment		
	and Maintenance of Primary Cell		
	Cultures of Adherent and Non-Adherent		
	Cell Lines with examples.		
	Application of Cell Cultures		
	Communication Skills	15	30 hrs
Unit III	Introduction to Communication	lectures	
Scientific Writing and	Elements, Definitions, Scope of		
Communication Skills	Communication and Communication as		
	part of Science		
	Communication ElementsVerbal and		
	Non-Verbal Communications.		
	Principles of Effective Communication,		
	Oral Presentations		
	Scientific Reading, Writing &		
	Presentation		
	Scientific Writing		
	Process of Scientific Writing: Thinking,		
	Planning, Rough Drafts		
	and Revising Contents.		
	Introduction to Scientific Reports and		
	Writings		
	Compilation of Experimental Data,		
	Communication Methods in Science,		
	Examples of Scientific and Unscientific		
	Writing.		
	Writing Papers, Reviews, Bibliography		
	PlagiarismIntroduction to Plagiarism,		
	Examples of Plagiarism.		

Biotechnology-II : Enzymology, Immunology and Biostatistics

COURSE CODE	TITLE	CREDI	Notional		
		TS	Hours		
USBT 206	Enzymology, Immunology and Biostatics	2			
Course Objectives : To aquaint students with concepts in Enzymology, Immunology and					
Biostatistics					
Learning Outcome : To impart the skills in Enzyme Kinetics, Immunological Techniques and					
Biostatistics					

	Definition, Classification, Nomenclatu	15	30 hrs
Unit I	re, Chemical Nature, Properties of	lectures	50 115
Enzymes	Enzymes,		
	Mechanism of Enzyme Action,		
	Active Sites, Enzyme Specificity,		
	Effect of pH, Temperature, Substrate		
	Concentration on Enzyme Activity,		
	Enzyme Kinetics, Michelis-Menten		
	Equation,		
	Types of Enzyme Inhibitions-Competi		
	tive, Uncompetitive, Non-Competitive		
	Allosteric Modulators Co-Factors,Zym		
	ogens,		
	Overview of Immune Systems, Cell and	15	30 hrs
Unit II	Organs involved, T and B cells.	lectures	
Immunology	Innate Immunity, Acquired Immunity,		
	Local and Herd Immunity, Humoral		
	and Cellular Immunity - Factors		
	Influencing and Mechanisms of each.		
	Antigens and Antibodies: Types of		
	Antigens, General Properties of		
	Antigens, Haptens and Superantigens		
	Discovery and Structure of Antibodies		
	(Framework region) Classes of		
	Immunoglobulins, Antigenic		
	Determinants.		
	Antigen-Antibody Interactions Monoclonal Antibodies,		
	Vaccines (Live, Killed) and Toxoid.		
	Problems with Traditional Vaccines,		
	Impact of Biotechnology on Vaccine		
	Development.		
	Defination &Importance of Statistics i	15	30 hrs
Unit III	n Biology	lectures	50 115
Biostatistics	Types of Data, Normal and Frequency	lectures	
	Distribution		
	Representation of Data and Graphs		
	(Bar Diagrams, Pie Charts and		
	Histogram, Polygon and Curve)		
	Types of Population Sampling		
	Measures of Central Tendency		
	(For Raw, Ungroup & Group Data)		
	Mean		
	Median		
	Mode		
	Measures of Dispersion		
	Range, Variance, Coefficient of		
	Variance.		
	Standard Derivation.		
	Standard Error.		

Semester – II PRACTICALS

SEMESTER – II Practicals Chemistry

COURSE CODE	TITLE CREDITS Notional Hours				
USBTP 201	Chemistry	2	30 hrs		
1. Spot test for Carbohydr	ates, Fats and Proteins and Amino Acids a	nd Nucleic Ad	cids		
2. Standardization of Cold	rimeter and Estimation of Reducing sugar	by DNSA me	thod		
3. Estimation of Protein by	y Biuret method and Lowry method				
1 /	Saponification Value of Oil or Fat, Iodine ponification reaction between ethyl acetate				
5. To determine enthalpy	of dissolution of salt like KNO3				
6. Determine the rate cons	tant for hydrolysis of ester using HCl as a	catalyst			
7. Study the kinetics of rea	action between Thiosulphate ion and HCl				
8. Study reaction between determine order of reac	potassium Persulphate and Potassium Iodition	ide kinetically	and hence to		
9. Study the reaction betw and neutral medium	een NaHSO3 and KMnO4 and balancing t	he reaction in	acidic, alkaline		
10. Study transfer of elect	trons (Titration of sodium thiosulphate	with potassiu	Im dichromate)		
11. Determination of the	volume strength of hydrogen peroxide s m permagnate solution	•			
12. Determination of amou	nt of K oxalate and oxalic acid in the given	solution Titr	imetrcially		

SEMESTER – II Practicals

Life Sciences

	Life Delences		
COURSE CODE	TITLE	CREDITS	Notional
			Hours
USBTP 202	Life Sciences	2	30 hrs
1 Study of Hill's reaction		· · · · · ·	

1. Study of Hill's reaction

2. Colorimetric study of Absorption Spectrum of Photosynthetic Pigments

- 3. Movemnt of Food in Paramoecium
- 4. Activity of Salivary Amylase on Starch
- 5. Analysis of Urine
- 6. Study of Mammalian Blood, Blood count using Haemocytometer and estimation of Haemoglobin in Mammalian Blood
- 7. Study of Human Blood Groups
- 8. Study of Mammalian Kidney and Heart
- 9. Problems in Mandelian Genetics
- 10. Study of Mitosis and Meiosis
- 11. Study of Karyotypes Normal Male and Normal Female
- 12. Study of Interactions Commensalism, Mutualism, Predation and Antibiosis, Parasitism.

SEMESTER – II Practicals Biotechnology

Biotechnology truments used in Biotechnology Laborate Shaker, Filter Assembly, LAF, <i>pH</i> n	2 tory (Autoclay	Hours 30 hrs
truments used in Biotechnology Laborate		
֥	tory (Autoclay	
Shaker, Filter Assembly, LAF, pH n		e, Hot air Oven,
	meter and Col	orimeter)
The effect of pH , Temperature on active Concentration on enzyme activity and the eraction by Ouchterlony method	n for Callus C Catalase and l vity of Enzyn l determinatio	ulture Dehydrogenease ne n of Vmax and
n P	Amylase. Lipase, Protease, Urease, e effect of pH , Temperature on action oncentration on enzyme activity and raction by Ouchterlony method Median, Mode and Standard Deviato ogram and Pie Diagram	Amylase. Lipase, Protease, Urease, Catalase and I e effect of <i>pH</i> , Temperature on activity of Enzym oncentration on enzyme activity and determinatio raction by Ouchterlony method Median, Mode and Standard Deviation and Data

Semester – I and II

Ability Enhancement Course 1 (FC I) Ability Enhancement Course 2 (FC II)

Ability Enhancement Course 1 (FC I)

Societal Awareness

	Societal Awareness		r
COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 107	Societal Awareness	2	
	udents with concepts of Societal Awarness		
Learning Outcome : To impart know	blems in Society		
Unit I	Understand the multi-cultural diversity of Indian society through its demographic composition: population distribution according to religion,	15 Lectures	30 hrs
Overview of Indian Society	caste, and gender; Appreciate the concept of linguistic diversity in relation to the Indian situation; Understand regional variations according to rural, urban and tribal characteristics; Understanding the concept of diversity as difference		
Unit II Concept of Disparity	Concept of Disparity- I Understand the concept of disparity as arising out of stratification and inequality; Explore the disparities arising out of gender with special reference to violence against women, female foeticide (declining sex ratio), and portrayal of women in media;Appreciate the inequalities faced by people with disabilities and understand the issues of people with physical and mental disabilities Concept of Disparity-II Examine inequalities manifested due to the caste system and inter-group conflicts arising thereof; Understand inter-group conflicts arising out of communalism; Examine the causes and effects of conflicts arising out of regionalism and linguistic differences	15 Lectures	30 hrs
Unit III The Indian Constitution and Significant Aspects of Political Processes	The Indian Constitution Philosophy of the Constitution as set out in the Preamble; The structure of the Constitution-the Preamble, Main Body and Schedules; Fundamental Duties of the Indian Citizen; tolerance, peace and communal harmony as crucial values in strengthening the social fabric of Indian society; Basic features of the Constitution Significant Aspects of Political Processes The party system in Indian politics; Local self- government in urban and rural areas; the 73rd and 74th Amendments and their implications for inclusive politics; Role and significance of women in politics	15 lectures	30 hrs

Topics for Project Guidance: Growing Social Problems in India:

- Substance abuse-impact on youth & challenges for the future
- *HIV/AIDS* awareness, prevention, treatment and services
- Problems of the elderly-causes, implications and response
- Issue of child labour-magnitude, causes, effects and response
- Child abuse- effects and ways to prevent
- Trafficking of women-causes, effects and response

Ability Enhancement Course 2 (FC II) Globalization, Ecology and Sustainable Development

COURSE CODE	TITLE	CREDITS	Notional Hours
USBT 207	Globalization, Ecology and Sustainable	2	
	Development		
Course Objective : To aquaint the s	tudents with concepts of Globalization, Ecology and Envi	ironment	
	wledge of Globalization make students aware about the I		ty
Unit I Globalisation and Indian Society and Human Rights	Globalisation and Indian Society Understanding the concepts of liberalization, privatization and globalization;Growth of information technology and communication and its impact manifested in everyday life; Impact of globalization on industry: changes in employment and increasing migration; Changes in agrarian sector due to globalization; rise in corporate farming and increase in farmers' suicides. Human Rights Concept of Human Rights; origin and evolution of the concept; The Universal Declaration of Human Rights;Human Rights constituents with special reference to Fundamental Rights stated in the	15 Lectures	30 hrs
Unit II Ecology and Sustainbale Development	ConstitutionEcologyand Sustainbale DevelopmentImportance of Environment Studies in the current developmental context; Understanding concepts of Environment, Ecology and their interconnectedness; Environment as natural capital and connection to quality of human life; Environmental Degradation causes and impact on human life; Sustainable development, concept and components; poverty and environment	15 Lectures	30 hrs
Unit III Understanding and Managing Stress and Conflict in Contemporary Society	Understanding Stress and Conflict Causes of stress and conflict in individuals and society; Agents of socialization and the role played by them in developing the individual; Significance of values, ethics and prejudices in developing the individual; Stereotyping and prejudice as significant factors in causing conflicts in society. Aggression and violence as the public expression of conflict Managing Stress and Conflict in Society Types of conflicts and use of coping mechanisms for managing individual stress; Maslow's theory of self-actualisation;Different methods of responding to conflicts in society; Conflict-resolution and efforts towards building peace and harmony in society	15 lectures	30 hrs

Topics for Project Guidance: Growing Social Problems in India:

• Increasing urbanization, problems of housing, health and sanitation;

- Changing lifestyles and impact on culture.
- Farmers' suicides and agrarian distress.
- Debate regarding Genetically Modified Crops.
- Development projects and Human Rights violations.
- Increasing crime/suicides among youth.

		SEMESTER- III		
Course code	Course type	Course Title	Credits	Lectures/ Week
USBT301	Core Subject	Biophysics	2	3
USBT302	Core Subject	Applied Chemistry- I	2	3
USBT303	Core Subject	Immunology	2	3
USBT304	Core Subject	Cell Biology and Cytogenetics	2	3
USBT305	Core Subject	Molecular Biology	2	3
USBT306	Skill Enhancement Elective	Bioprocess Technology	2	3
USBT307	General Elective	Research Methodology	2	3
USBTP301	Core Subject Practicals	Practicals of USBT_301 and USBT_302	2	6
USBTP302	Core Subject Practicals	Practicals of USBT_303 and USBT_304	2	6
USBTP303	Core Subject and Skill Enhancement Elective Practicals	Practicals of USBT_305 and USBT_306	2	6
		SEMESTER-IV		
Course code	Course type	Course Title	Credits	Lectures/ Week
USBT401	Core Subject	Biochemistry	2	3
USBT402	Core Subject	Applied Chemistry- II	2	3
USBT403	Core Subject	Medical Microbiology	2	3
USBT404	Core Subject	Environmental Biotechnology	2	3
USBT405	Core Subject	Biostatistics and Bioinformatics	2	3
USBT406	Skill Enhancement Elective	Molecular Diagnostics	2	3
USBT407	General Elective	Entrepreneurship Development	2	3
USBTP401	Core Subject Practicals	Practicals of USBT_401 and USBT_402	2	6
USBTP402	Core Subject Practicals	Practicals of USBT_403 and USBT_404	2	6
USBTP403	Core Subject and Skill Enhancement Elective Practicals	Practicals of USBT_405 and USBT_406	2	6

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT301	BIOPHYSICS	2		
Course objective				
-	this course is to have a firm foundation of the f	undamen	tals and ap	plications
of current biophy	nes:- By the end of the course the student will:			
e	derstanding of the different aspects of classical Phy	reice		
•	te principles of Physics to applications and technic		field of Bi	alogy such
	, Spectroscopy and Electrophoresis.	ides in the		stogy such
UNIT I	Introduction to Optics and Lasers:		15	
Optics and	Optics :		10	
Electromagnetic Radiations	Properties of Light - Reflection, Refraction, Dispersion, Interference.			
	Lasers :			
	Properties of Lasers, Stimulated Emissions, Laser Action; Applications of Laser.			
	Electromagnetic Radiations:			
	Introduction to Electromagnetic Radiation.			
	Spectroscopy :			
	Types and Properties of Spectra; Basic Laws of Light Absorption.			
	Spectrophotometer:-Principle, Instrumentation and Applications; UV-Vis Spectrophotometer, Single and Dual Beam Spectrophotometer.			
	Microscopy:			
	Types of Microscopy; Electron Optics; Electron Microscopy- Preparation of Specimen, SEM, TEM and Immuno-Electron Microscopy.			
	Fluorescence Microscopy.			
UNIT II	Heat:		15	
Heat, Sound, Magnetism and Fluid Dynamics	Concept of Temperature; Modes of Heat Transfer; Measuring Temperature; Platinum Resistance Thermometer; Thermocouple and Thermistors.			
	Sound:			
	Types of Sound Waves - Audible, Ultrasonic and Infrasonic Waves; Doppler Effect; Applications of Ultrasonic Waves.			
	Magnetism:			
	Magnetic Field; Magnetism of Earth; Para- magnetism, Diamagnetism, Ferromagnetism. Nuclear Magnetism and Biomagnetism.			

	 Fluid Dynamics : Viscosity: Definition Flow of Liquids through Capillaries; Stokes' Law; Terminal Velocity. Determination of 'η' by Falling Sphere Method; Viscosity Estimation by Oswald's Viscometer. 		
	 Surface Tension: Definition - Surface Tension and Surface Energy; Capillary Action; Angle of Contact; Wettability; Temperature Dependence of Surface Tension. Applications in Biology. 		
UNIT III Electrophoretic Techniques	Electrophoresis: Migration of Ions in an applied electric field; Factors affecting Electrophoretic Mobility; Moving Boundary Electrophoresis; Principle of Electrophoresis; Supporting Matrix; Paper Electrophoresis; AGE; Native and SDS PAGE (reducing and non-reducing, continuous and discontinuous);IEF and 2D PAGE. Staining and Detection Methods; Gel-Documentation. Applications in Biology.	15	

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT302	APPLIED CHEMISTRY –I	2		
<u> </u>				

Course objectives:-

The objective of this course is to have a firm foundation of the fundamentals and applications of Organic and Green Chemistry.

Learning outcomes:- By the end of the course the student will be able to:

- Develop an understanding of the different aspects of Organic and Green Chemistry.
- Discuss role of Organic Compounds in Biology and Synthesis of Organic Compounds.
- Discuss role of Green Chemistry and its application in Industry.

UNIT I Organic Chemistry	Introduction to Types of Organic Reactions : Addition, Elimination and Substitution Reactions.	15	
	Essential and Non-essential Elements in Biological Systems. Role of Metal Ions in Biological Systems.		
	Metal Coordination in Biological Systems: Enzymes, Apoenzymes and Coenzymes. Biological Role of Metalloenzymes <i>wrt</i> Myoglobins, Haemoglobin. Biological Role of Carboxypeptidases, Catalases and Peroxidases.		

	Structure and Function : Dioxygen Binding, Transfer and Utilization; Metal Complexes in Medicines.		
UNIT II Synthesis of Organic Compounds	Synthesis of Organic Compounds :Criteria for Ideal Synthesis; Selectivity and Yield.Linear and Convergent Synthesis and Multicomponent Reactions.Microwave Assisted Organic Synthesis, Ultrasound in Synthesis and Polymer supported Synthesis.Retrosynthesis.	15	
UNIT III Green Chemistry and Synthesis	Green Chemistry and Synthesis: Introduction to Green Chemistry; Need and Relevance of Green Chemistry; Principles of Green Chemistry. Green Synthesis in Industry: Green Materials, Green Reagents, Green Solvents and Green Catalysts.	15	

Course Code	Title	Credits	No. of lectures	Notional hours
USBT303	IMMUNOLOGY	2		

Course objectives:-

The objective of this course is to familiarize students with the Immune Effector Mechanisms and various Immunotechniques.

Learning outcomes:- By the end of the course the student will be able to:

- Understand the role of different types of Cells, Effector Molecules and Effector Mechanisms in Immunology.
- Understand the principles underlying various Immunotechniques.

Onderstand the principles anderlying various minumoteeningues.				
UNIT I Effectors of Immune Response	 Haematopoiesis; Cells of the Immune System; Primary and Secondary Lymphoid Organs. Complement System- Classical, Alternate and Lectin; Regulation and Biological Effects of Complement System; Deficiencies of Complement System 		15	
UNIT II Cell Receptors	 T-cell Receptor Complex : Structure and Activation. MHC Classes - General Organization and Inheritance; Structures and Peptide Interactions; Class I and II Diversity and Polymorphism; Antigen Presentation - Endocytic and Exocytic Pathways; MHC Restriction. B-cell Receptor : Structure, Maturation and Activation 		15	
	B-T Cell Interaction (B-T cell Cooperation).			

UNIT III Immuno- Techniques	Precipitation Reactions : Immunoprecipitation, Immunoelectrophoresis, CIEP, Rocket Electrophoresis and 2-D Immunoelectrophoresis.	15	
	Agglutination Reactions :		
	Passive, Reverse Passive, Agglutination Inhibition.		
	Coomb's Test; Complement Fixation Tests, RIA, ELISA, ELISPOT, Chemiluminescence, Western Blot, Immunofluorescence, Flow Cytometry.		
	Alternatives to Antigen-Antibody Reactions.		

Course Code	Title	Credits	No. of lectures	Notional hours
USBT304	CELL BIOLOGY AND CYTOGENETICS	2		
Course objectiv	es:-	I		
and Cytogenetics	The objective of this course is to have a firm foundation in the fundamentals of Cell Biology and Cytogenetics. Learning outcomes:- By the end of the course the student will be able to:			
• Develop an un	derstanding of the Cytoskeleton and Cell Membrar	ne.		
	ructure of Chromosomes and types of Chromosom			
• Discuss the pr	inciples underlying Sex Determination, Linkage an	d Mapping	<u>.</u>	
UNIT I	Cytoskeleton :		15	
Cytoskeleton	Overview of the Major Functions of Cytoskeleton.			
	Microtubules: Structure and Composition.			
	MAPs: Functions- Role in Mitosis, Structural Support and Cytoskeleton Intracellular Motility.			
	Motor Proteins: Kinesins, Dynein; MTOCs. Dynamic Properties of Microtubules.			
	Microtubules in Cilia and Flagella.			
	Microfilaments: Structure, Composition, Assembly and Disassembly.			
	Motor Protein: Myosin.			
	Muscle Contractility: Sliding Filament Model.			
	Actin Binding Proteins : Examples of Non- Muscle Motility.			
	Intermediate Filaments :Structure and Composition; Assembly and Disassembly; Types and Functions.			
UNIT II	Cell Membrane :		15	
Cell Membrane	Uptake of Nutrients by Prokaryotic Cells; Cell Permeability.			
	Principles of Membrane Transport- Transporters and Channels; Active Transport,			

	Passive Transport; Types of Transporters; Types of ATP Driven Pumps - Na+ K+ Pump. Cell Junctions; Cell Adhesion and Extracellular Material Microvilli; Tight Junctions, Gap Junctions; Cell Coat and Cell Recognition. Cellular Interactions.		
UNIT III	Cytogenetics :	15	
Cytogenetics	Structure of Chromosome - Heterochromatin, Euchromatin, Polytene Chromosomes.		
	Variation in Chromosomal Structure and		
	Number :		
	Deletion, Duplication, Inversion, Translocation, Aneuploidy, Euploidy and Polyploidy and Syndromes- Klinefelter, Turner, Cri-du-Chat, Trisomy -21, Trisomy 18 and Trisomy 13.		
	Sex Determination and Sex Linkage :		
	Mechanisms of Sex Determination (XX-XY, ZZ-ZW, XX-XO)		
	Dosage Compensation and Barr Body.		
	Genetic Linkage, Crossing Over and Chromosomal Mapping :		
	Tetrad Analysis; Two-point Cross; Three- point Cross; Pedigree Analysis.		

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT305	MOLECULAR BIOLOGY	2		
Course objectiv	es:-			
Regulation.	f this course is to have an insight into mecha mes:- By the end of the course the student will		1	ssion and
Translation.	nechanisms associated with Gene Expression a nechanisms associated with Regulation of Gene			-
UNIT I	Gene Expression- an Overview.		15	
Gene Expression- Transcription	Transcription Process in Prokaryotes : RNA Synthesis; Promoters and Enhancers; Initiation of Transcription at Promoters; Elongation and Termination of an RNA Chain.			
	Transcription in Eukaryotes : Eukaryotic RNA Polymerases; Eukaryotic Promoters; Transcription of Protein Coding Genes by RNA Polymerase; Eukaryotic mRNA's; Transcription of other genes;			

	Spliceosomes; RNA editing.		
	Nature of Genetic Code.	15	
UNIT II	Wobble Hypothesis.		
Gene	Translation :		
Expression- Translation	Process of Protein Synthesis (Initiation, Elongation, Translocation, Termination);		
	Post Translation Modifications.		
	Protein sorting.		
UNIT III	In Prokaryotes:	15	
Regulation of	In Bacteria :		
Gene	lac Operon of E.coli; trp Operon of E.coli.		
Expression	In Viruses :		
	Lytic / Lysogenic Regulation		
	In Eukaryotes :		
	Operons in Eukaryotes; Control of Transcriptional Initiation; Gene Silencing and Genomic Imprinting; Post-Transcriptional Control; RNA Interference.		

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT306	BIOPROCESS TECHNOLOGY	2		
Course objective	es:-	·		

The objective of this course is to understand the basics skills applied in Fermentation Technology and build a foundation for more advanced studies in Bioprocess Technology. **Learning outcomes:-** By the end of the course the student will be able to:

- Develop an understanding of the various aspects of Bioprocess Technology.
- Develop skills associated with screening of Industrially Important Strains.
- Understand principles underlying design of Fermentor and Fermentation Process.

UNIT I Microorganisms in Industrial Processes	Types of Microorganisms used in Industrial Processes : Bacteria, Actinomycetes, Fungi and Algae. Screening and Maintenance of Strains: Primary Screening and Secondary Screening; Cultivation; Preservation of Industrially Important Microbial Strains.	15	
UNIT II	Design of a fermentor :	15	
Fermentor and Fermentation	Stirred Tank Fermentor- Basic Design; Parts of a Typical Industrial Fermentor.		
Processes	Fermentation Media :		
	Components; Design and Optimization.		
	Sterilization :		
	Sterilization of Fermentor and Fermentation Media.		

	 Process Parameters : pH, Temperature, Aeration, Agitation, Foam, etc. Types of Fermentation : Surface and Submerged; Batch and Continuous, Aerobic and Anaerobic. Product Isolation and Purification. Study of Representative Fermentation Processes : Outline of Penicillin and Ethanol Production by Fermentation along with a flow-diagram. 		
UNIT III In-vivo and In- vitro Assay of Industrial Products	Assay of Industrial Products:Chemical and Biological; Types and Subtypes; Kinetics.Advantages and Disadvantages.Half-Life Determination of Pharmacological Products.Bioavailability and Bioequivalence Studies	15	

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT307	RESEARCH METHODLOGY	2		
Course object	ives:-			

The objective of this course is to develop Research Aptitude, Logical Thinking and Reasoning.

Learning outcomes:- By the end of the course the student will be able to:

- Understand basic principles of Research Methodology and identify a Research Problem.
- Understand a general definition of Research Design.
- Identify the overall Process of Designing a Research Study from its inception to its Report.

ittepeitt.			
UNIT I Introduction	Meaning of Research; Objectives of Research; Motivation in Research; Types of Research;	15	
to Research	Research Approaches; Significance of Research;		
Methodology	Research Methods versus Methodology; Research		
and	Process; Criteria of Good Research; Problems		
Research Problem	Encountered by Researchers in India; What is a Research Problem? Selecting the Problem; Necessity of Defining the Problem; Technique Involved in Defining a Problem		
UNIT II	Meaning of Research Design; Need for Research	15	
Research Design and Data	Design; Features of a Good Design; Important Concepts Relating to Research Design; Different Research Designs; Basic Principles of Experimental Designs;		
Collection	Developing a Research Plan-		
	Collection of Primary Data; Observation Method; Interview Method; Collection of Data		

	through Questionnaires; Collection of Data through Schedules; Other Methods of Data Collection, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method		
UNIT III Interpretation and Report Writing	Meaning of Interpretation, Why Interpretation?, Technique of Interpretation, Precautions in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.	15	
Internal Evaluation	Submission of Research Report/ Project/ Case Study/ Assignment		

PRACTICALS

	SEMESTER III	
Course code	Title	Credits
USBTP301	1. Study of Absorption Spectra of Coloured Compounds (CuSO ₄ , CoCl ₂ ,	2
(PRACTICALS	KMnO ₄).	
based on	2. Verification of Beer-Lambert's Law.	
USBT301 and USBT302)	3. Extraction of Plasmid DNA and Separation by Agarose Gel Electrophoresis.	
	4. Determination of Purity of Plasmid DNA using UV Spectrophotometry.	
	5. Study of the Structure and Function of an Electron Microscope (Visit / Video Demonstration - including Sample Preparation and Staining).	
	6. Demonstration of Structure and Working of a Fluorescence Microscope (Stained Preparation).	
	7. Electrophoresis of Proteins by PAGE and SDS-PAGE.	
	8. Purification of any TWO Organic Compounds by Recrystallization Selecting Suitable Solvent.	
	9. Organic Estimations: Acetone, Amide, Benzoic Acid.	
	10. Organic Preparations :	
	a) Acetylation of Primary Amine (Preparation of Acetanilide).	
	 b) Base Catalysed Aldol Condensation (Synthesis of Dibenzalpropanone). 	
Course code	Title	Credits
USBTP302	1. Complement Fixation Test (CFT).	2
(PRACTICALS	2. Passive Agglutination- RA Factor Test.	
based on	3. Immunoelectrophoresis.	
USBT303 and USBT304)	4. ELISA (Kit-based) - HEPALISA.	
0301304)	5. DOT-ELISA.	
	6. Western Blotting - Demonstration.	
	7. Flow Cytometry - Lab Visit.	
	8. Study of Chromosomal Aberrations- Deletion, Duplication, Inversion,	

Course code	 Translocation and Syndromes- Trisomy 21 Trisomy 13 Trisomy 18, Klinefelter, Turner and Cri-du-Chat. 9. Induction of Polyploidy by PDB Treatment using Suitable Plant Material. 10. Study of Polytene Chromosomes. 11. Mapping based on Tetrad Analysis and Three Point Cross. 12. Pedigree Analysis- Autosomal and Sex-Linked. 	Credits	
USBTP303	1. Study of <i>E.coli</i> Diauxic Growth Curve- (Lactose and Glucose).	2	
(PRACTICALS	 Study of <i>L.con</i> Diauxic Growth Curve- (Lactose and Glucose). Study of <i>lac</i> Gene Expression using Blue-White Selection. 	2	
based on	3. Expression of β -galactosidase and Measurement of Activity.		
USBT305 and			
USBT306)	 Screening for an Antibiotic Producing Strain of Microorganism. Screening for an Alcohol Producing Strain of Microorganism. 		
	6. Lab Scale Production of Penicillin (Static and Shaker).		
	7. Purification of <i>Penicillin</i> from Broth Culture of <i>Penicillium spp.</i> by Solvent Extraction.		
	8. Lab Scale Production of Ethanol.		
	9. Purification of Ethanol from Broth Culture of <i>Saccharomyces spp.</i> by Distillation.		
	10. Estimation of <i>Penicillin</i> from Recovered Broth by Chemical (Iodometric) Method.		
	11. Estimation of <i>Penicillin</i> from Recovered Broth by Biological (Bioassay) Method.		
	12. Estimation of Alcohol from Recovered Broth by Dichromate Method.		

SEMESTER-IV

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT401	BIOCHEMISTRY	2		
Catabolism of Learning outc Discuss the 	ives:- of this course is to gain an insight into the Metab Carbohydrates, Amino Acids, Lipids and Nucleo omes:- By the end of the course the student will Metabolic Pathways of Carbohydrates, Amino Aci Role of Energy Rich Molecules in Metabolism.	otides. be able to)	
UNIT I	Carbohydrate Metabolism :	15	15	
Carbohydrate Metabolism, ETS and Energy Rich Compounds	Glycolytic Pathway and its Regulation, Homolactic Fermentation; Alcoholic Fermentation; Energetics of Fermentation; Citric Acid Cycle and its Regulation; Gluconeogenesis; Pentose Phosphate Pathway; Glyoxalate Pathway; Reductive TCA . (Sequence of Reactions, Regulation, Energy Yield and Metabolic Disorders of the above Pathways) Electron Transport System : Electron Transport and Oxidative Phosphorylation. Inhibitors of ETS. Energy Rich Compounds : ATP as Energy Currency, Structure of ATP, Hydrolysis, Other Energy Rich Compounds other than ATP like PEP, Creatine Phosphate, etc.			
UNIT II	Amino Acid Breakdown :	15	15	
Amino Acid Metabolism	 Deamination, Transamination, Urea Cycle, Breakdown of Glucogenic and Ketogenic Amino Acids. Amino Acids as Biosynthetic Precursors : Biosynthesis of Epinephrine, Dopamine, Serotonin, GABA, Histamine, Glutathione. (Sequence of Reactions, Regulation and Metabolic Disorders of the above Pathways) 			
UNIT III	Lipid Metabolism :	15	15	
Lipid and Nucleotide Metabolism	 Mobilization, Transport of Fatty Acids. Beta, Alpha and Omega Oxidation of Saturated Fatty Acids; Oxidation of Unsaturated Fatty Acids; Oxidation of Odd Chain Fatty Acids. Energy Yield, Ketone Body Breakdown to Yield Energy. (Sequence of Reactions, Regulation, Energy Yield and Metabolic Disorders of the above Pathways) 			

Nucleotide Metabolism :		
Degradation of Purines and Pyrimidines.		

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT402	APPLIED CHEMISTRY –II	2		
Course objecti	ves:-	•		
of current Chen	of this course is to have a firm foundation of the nical Theories for the Physical World. omes:- By the end of the course the student will		ntals and ap	plications
U	understanding of the different aspects of Analytical C			
Gain knowle	dge of Natural Product Chemistry and related acquir	ed skills.		
• Gain an unde	erstanding of basic concepts in Polymer Chemistry a	nd Nanom	aterials.	
UNIT I	Sampling :	15	15	
Sampling and Separation	Importance of Sampling and Sampling Techniques			
Techniques	Types of Sampling - Random and Non-Random Sampling of Solids, Liquids and Gases.			
	Separation Techniques :			
	Types of Separation Techniques - Filtration, Zone Refining, Distillation, Vacuum Distillation.			
	Solvent Extraction - Partition Coefficient and Distribution Ratio, Extraction Efficiency, Separation Factor, Role of Complexing Agents, Chelation, Ion Pair Formation, Solvation, and Soxhlation.			
	Centrifugation - Basic Principles of Sedimentation.			
UNIT II	Natural Product Chemistry :	15	15	
Natural Product Chemistry	Primary and Secondary Metabolites. Classification of Natural Products based on Bio- Synthesis.			
	Classification of Natural Products based on Structure- Alkaloids, Phenolics, Essential Oils and Steroids.			
	Structure Determination of Natural Products.			
	Commercial Synthesis of Natural Products.			
	Chromatographic Separation of Natural Products :			
	Gas Chromatography and its Applications. Liquid Chromatography : HPLC and its Applications.			
	HPTLC for Separation and Analysis of Natural Products.			

UNIT III Polymers and Nanomaterials	Polymers :Introduction to Polymers.Types of Polymers - Monomer, Polymer,Homopolymer, Copolymer, Thermoplastics andThermosets, Addition and CondensationPolymers (Examples and Uses)Stereochemistry of Polymers.Biodegradable Polymers.Biodegradable Polymers.Nanomaterials :Introduction to Nanomaterials.Forms of Nanomaterials :Nanofilms and NanotubesSynthesis and Characterization ofNanomaterials.Applications of Nanomaterials.	15	15	
---	--	----	----	--

Course Code	Title	Credits	No. of lectures	Notional hours
USBT403	MEDICAL MICROBIOLOGY	2		
Course objecti	ves:-			
The objective	of this course is to gain insight into Disease	e Factors	and Proce	esses and
	d by Microorganisms.			
Learning outco	omes:- By the end of the course the student will	be able to):	
Discuss the Symptoms a	ors playing a role in causing a disease. e various aspects of Systemic Infections ind and Prophylaxis. hnical capability of handling, isolating and iden	_		-
UNIT I	Host Parasite Relationship:		15	
Infectious Diseases	Normal Flora; Factors Affecting the Course of Infection and Disease; Mechanisms of Infection and Virulence Factors.			
	Infection:			
	Patterns of Infection; Types of Infections; Signs and Symptoms; Epidemiology and Epidemiological Markers.			
	Diseases:			
	Origin of Pathogens; Vectors; Acquisition of Infection; Koch's Postulates.			
UNIT II	Skin :		15	
Medical	S. aureus, S. pyogenes.			
Microbiology- Causative Organisms- I	Respiratory Tract Infections : <i>M. tuberculosis, S. pneumoniae</i> (Characteristics Transmission, Course of Infection, Lab Diagnosis, Management of TB, Prevention and Control, Immuno and Chemoprophylaxis, DOTS and MDR).			

	Urinary Tract Infections : <i>E.coli</i> : Characteristics, Virulence, Clinical disease, and <i>E.coli</i> Infections. <i>Proteus</i> .		
UNIT III Medical Microbiology - Causative Organisms- II	GI Tract Infections : Salmonella and Shigella spps. (Characteristics, Virulence- Pathogenesis and Immunity, Clinical Disease, Carriers Lab Diagnosis, Phage Typing Prophylaxis and Treatment). Sexually Transmitted Diseases : Syphilis and Gonorrhoea. Nosocomial Infections : Ps. aeruginosa	15	

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT404	ENVIRONMENTAL BIOTECHNOLOGY	2		

Course objectives:-

The objective of this course is to gain awareness about different Types of Environmental Pollution and Related Issues.

Learning outcomes:- By the end of the course the student will be able to:

- Gain an understanding of the causes, types and control methods for Environmental Pollution.
- Application of different life forms in Environmental Remediation.

- 11			
UNIT I	Sources of Pollution.	15	
Environmental	Air Pollution :		
Pollution	Types; Sources; Classification of Air Pollutants; Air Pollution Monitoring and Control.		
	Water Pollution :		
	Causes, Types and Classification; Eutrophication; Assessment of Water Quality- Pollutant Monitoring and Control;		
	Soil and Solid Waste Pollution :		
	Characteristics of Wastes, Impacts of Solid Waste on Health, Occupational Hazards and Control.		
	Soil Erosion :		
	Concept, Causes and Effects.		
UNIT II	Green House Effect :	15	
Global Environmental	Factors Responsible for Green House Effect; Green House Gases.		
Problems and Issues	Global Warming; Ozone Depletion; Kyoto Protocol; UV Radiation; Acid Rain.		

UNIT III	Concept of Bioremediation.	15	
Bioremediation	Microorganisms in Bioremediation, Myco- remediation and Phytoremediation.		
	Bioremediation Technologies.		
	Measuring Bioremediation in the Field.		
	Bioaugmentation and Biostimulation.		
	Monitoring the Efficacy of Bioremediation.		

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT405	BIOINFORMATICS and BIOSTATISTICS	2		
Course objectives:-				

The objective of this course is learning and understanding basic concepts of Bioinformatics and Biostatistics.

Learning outcomes:- By the end of the course the student will be able to:

- Gain an understanding of the basic concepts of Bioinformatics and Biostatistics.
- Understand the tools used in Bioinformatics.
- Apply the various Statistical Tools for Analysis of Biological Data.

• Apply the various Statistical Tools for Analysis of Biological Data.				
UNIT I	Computer Basics :		15	
Introduction to Computers and Biological Databases	Organization of a Computer; I/O Units; Computer Memory; Processor; Binary Arithmetic; Logic Circuit; Architecture; Operating System. Internet Basics :			
	Connecting to the Internet, E-mail, FTP,			
	www, Difference between www and Internet.			
	Biological Databases :			
	Classification of Databases - Raw and Processed Databases; Primary (NCBI), Secondary (PIR) and Tertiary or Composite (KEGG) Databases; Structure and Sequence Databases. Specialized Databases - Protein Pattern Databases; Protein Structure and Classification Databases (CATH/SCOP).			
	Genome Information Resources:			
	DNA Sequence Databases Specialized Genomic Resources.			
	Protein Databases based on Composition, Motifs and Patterns.			
	Protein Structure Visualization Software.			
UNIT II	BLAST and Sequence Alignment :		15	
BLAST and Sequence	BLAST and its Types; Retrieving Sequence using BLAST.			
Alignment	Pairwise Alignment :			
	Identity and Similarity; Global and Local Alignment; Pairwise Database Searching.			

	Multiple Sequence Alignment: Goal of Multiple Sequence Alignment; Computational Complexity; Manual Methods; Simultaneous Methods; Progressive Methods; Databases of Multiple Alignment; Secondary Database Searching; Analysis Packages; MSA and Phylogenetic Trees.		
UNIT III Biostatistics	Theory and Problems based on- Coefficient of Correlation and Regression Analysis; Steps in Testing Statistical Hypothesis; Parametric Tests:- Z Test – Single Mean and Two Means, t- Test – Single Mean, Paired and Unpaired; Chi- Square Test.	15	

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT406	MOLECULAR DIAGNOSTICS	2		

Course objectives:-

The objective of this course is learning and understanding Molecular Techniques and utilizing these techniques in Diagnosis.

Learning outcomes:- By the end of the course the student will be able to:

- Gain an understanding of the basic Principles used in Molecular Diagnosis.
- Gain critical thinking and analytical skills to understand new Diagnostic Methods.
- Apply the knowledge and skills gained in the course should be useful in developing new Diagnostic Kits.

Diagnostic	KIIS.	r	
UNIT I	Introduction to Molecular Diagnostics :	15	
Basics of Molecular Diagnostics	Overview of Molecular Diagnostics; History of Molecular Diagnostics; Molecular Diagnostics in Post Genomic Era; Areas used in Molecular Diagnostics; Future Prospects - Commercialising Molecular Diagnostics, Personalized Medicine, Theranostics.		
	Characterisation and analysis of Nucleic -		
	Acids and Proteins :		
	Extraction, Isolation and Detection of DNA, RNA and Proteins; Restriction Endonucleases and Restriction Enzyme Mapping.		
	Hybridisation Techniques :		
	Southern, Northern, Western and FISH; Markers, Probes and its Clinical Applications.		
UNIT II	Target amplification :	15	
Nucleic Acid Amplification Methods	PCR - General Principle; Components of a Typical PCR Reaction; Experimental Design; Primer Designing; Control of PCR Contamination and Mispriming; PCR Product Clean-up and Detection.		
	PCR Types :		
	Reverse Transcriptase and Real Time PCR.		

	Probe amplification :		
	Ligase Chain Reaction		
UNIT III	DNA Polymorphism and Identification:	15	
Molecular	RFLP and Parentage Testing;		
Biology based	RFLP and Sickle-Cell Anaemia.		
Diagnostics	Molecular Diagnostics for Infectious Diseases		
	Molecular Testing for <i>Neisseria</i> , Molecular Diagnosis for HIV-1;		
	Genetic Counselling and Molecular Diagnosis		
	Genetic Testing- Need and Uses; genetic Counselling.		
	Case Studies- Diagnostic Testing for Cystic Fibrosis; Fragile X Diagnostic and Carrier Testing.		
	Ethical, Social and Legal Issues to Molecular - Genetic Testing		

Course Code	Title	Credits	No. of Lectures	Notional hours
USBT407	ENTERPRENEURSHIP DEVELOPMENT	2		

Objective:

To develop and systematically apply an Entrepreneurial way of thinking that will allow identification and creation of Business Opportunities.

Learning Outcome: By the end of the course the student will be able to:

- Develop an understanding of the systematic process and to select and screen a Business Idea.
- Design strategies for successful implementation of ideas.
- Write a Business Plan.

UNIT I Introduction to Entrepreneurship Development	Concept of Entrepreneur; Entrepreneurship; Need and Importance; Factors Influencing Entrepreneurship; Essentials of a Successful Entrepreneur	15
UNIT II Setting-up of an Enterprise and Planning	Location of Enterprise; Real Estate and Human Resource Planning, Financial Planning; Role of Government and Financial Institutions in Entrepreneurship Development; Raising Money from Venture Capitalists, Government Grants, Product Selection and Ideas; Project Planning and Formulation; Project Feasibility Assessment; Regulatory Affairs, Corporate Laws, Innovation, IPR generation and Protection, Preparation of a Business Plan, Characteristics and Importance of Planning;	15

UNIT III Marketing, Sales, Advertising and International Market research	Marketing Plan for an Entrepreneur; Strategic Alliances, Advertising and Sales Promotion; Market Assessment, Need for International Market Research, Domestic <i>vs.</i> International Market Research, Cost and Methodology of Market Research, Desk and Field Research	15	
Internal Evaluation	Submission and Presentation of Business Proposal for any Biotechnological Product/ Enterprise		

	SEMESTER IV	
Course code	Title	Credits
USBTP401 (PRACTICALS	1. Determination of Lactate Dehydrogenase (LDH) Activity in Blood Serum.	2
based on	2. Determination of Total, LDL and HDL Cholesterol in Serum.	
USBT401 and USBT402)	3. Organ Function Tests: Liver (SGPT, SGOT); Kidney (Urea from Serum).	
	4. Estimation of Uric Acid and Creatinine in Urine.	
	5. Qualitative Detection of Ketone Body in Urine.	
	6. Isolation of Mitochondria and Demonstration of ETC using a Marker Enzyme.	
	7. Separation of Binary (Solid-Solid) Mixture (Min 4 Compounds).	
	8. Identification of Organic Compound of Known Chemical Type (Min 4 Compounds).	
	9. HPLC analysis and Interpretation of any one Secondary Metabolite from Plants	
	10. Analysis of Essential Oils from any Plant Source using GC.	
	11. HPTLC fingerprint analysis of any one Medicinally Important Plant.	
	12. Chemical and Biological Synthesis of Silver Nanoparticles and its Characterisation by UV- VIS Spectrophotometer.	
Course code	Title	Credits
USBTP402	1. Identification of S.aureus-Isolation, Catalase, Coagulase Test.	2
(PRACTICALS	2. Identification of <i>E. coli</i> -Isolation, Sugar Fermentations, IMViC.	
based on	3. Identification of <i>Salmonella</i> - Isolation, Sugar Fermentations, TSI Slant.	
USBT403 and USBT404)	4. Identification of Shigella- Isolation, Sugar Fermentations, TSI Slant.	
0501404)	5. Identification of <i>Proteus-</i> Isolation, Sugar Fermentations, IMViC.	
	6. Identification of <i>Pseudomonas</i> - Isolation, Urease test, Oxidase Test, TSI Slant.	
	7. RPR Test (Kit Based).	
	8. Permanent Slide- Mycobacterium.	
	9. Biological Oxygen Demand (BOD).	
	10. Chemical Oxygen Demand (COD).	
	11. Isolation of Bacteria from Air by Gravity Sedimentation Method.	
	12. Most Probable Number (MPN) – Presumptive, Confirmed and Completed Tests.	

	13. Bioremediation of Metal.	
	14. Visit to STP / CETP	
Course code	Title	Credits
USBTP403 (PRACTICALS based on USBT405 and USBT406)	 Familiarization with NCBI, EMBL, DDBJ, PIR, KEGG Databases. Use of NCBI BLAST Tool. Pairwise and Multiple Sequence Alignment and Phylogeny. Classification of Proteins using CATH/SCOP. Visualization PDB Molecules using Rasmol/Raswin. Handling and Calibration of Micropipette. Isolation, Quantitative Analysis and AGE of Genomic DNA from Bacteria and Yeast. Isolation and Detection of RNA from Bacteria and Yeast. Restriction Enzyme Digestion. RFLP- Kit Based. 	2
	 Primer Designing through Open Online Source NCBI- BLAST. DNA Amplification – PCR. 	

Summer Training:

- 1. This should be taken up in the summer over a period of one month preferably in an Immunology / Veterinary / Virology Institute or a laboratory using Recombinant DNA Methods.
- 2. The students could also be assigned to assist a Clinic (in a hospital), a Fermentation Plant, Brewery or Bakery and watch the various stages in Brewing and Baking and Post-Fermentation Processing. Prior arrangement must be made on the mode of interaction of the educational institute with the Clinic and the Industry.

TYBSC Biotechnology Course Structure

Course code USBT	Title	Theory /Practical	Marks	Credits	Nos of Lectures & Practical
501	Cell biology	Theory	100	2.5	60
502	Medical Microbiology & Instrumentation	Theory	100	2.5	60
503	Genomes and Molecular Biology	Theory	100	2.5	60
504	Marine Biotechnology	Theory	100	2.5	60
P501+502	Cell biology+ Medical Microbiology & Instrumentation	Practical	100	3.0	72
P503+504	Genomes and Molecular Biology+ Marine Biotechnology	Practical	100	3.0	72
Applied Component	Biosafety	Theory	100	2.0	48
	Biosafety	Practical	100	2.0	48
	TOTAL		800	20	480

Semester V

Course code USBT	Title	Theory/ Practical	Marks	Credits	Nos of Lectures & Practical
601	Biochemistry	Theory	100	2.5	60
602	Industrial Microbiology	Theory	100	2.5	60
603	Pharmacology and Neurochemistry	Theory	100	2.5	60
604	Environmental Biotechnology	Theory	100	2.5	60
P 601-P 602	Biochemistry& Industrial Microbiology	Practical	100	3	72
P 603-P 604	Pharmacology - Neurochemistry and Environmental Biotechnology (50M)+ Project work (50M)	Practical	100	3	72
Applied component	Agribiotechnology	Theory	100	2.0	48
Applied component	Agribiotechnology	Practical	100	2.0	48
-	TOTAL		800	20	480

Teaching pattern:

One (01) Credit would be of thirty- forty (30-40) learning hours; of this more than fifty percent of the time will be spent on class room instructions including practical as prescribed by the University. Rest of the time spent invested for assignments, projects, journal writing, case studies, library work, industrial visits, attending seminars / workshops, preparations for examinations etc. would be considered as notional hours. The present syllabus considers (60L as class room teaching and 15 lectures as Notional hours/ paper). Each lecture duration would be for 48 min

The names of the reference books provided in the syllabus are for guidance purpose only. Students and faculty are encouraged to explore additional reference books, online lectures, videos, science journals for latest/ additional information.

Examination pattern for:

Theory:

- The question paper for the Term End Exam would be of **100 marks** consisting of 5 Questions (20M each), of which one question would be common for all units in the syllabus.
- The question paper would be set for 150 marks including internal options.
- There shall be no internal exam for any paper.

Practical:

- Would be conducted over a period of 3 days; 50M each paper.
- Each student to perform 2 major and 2 minor practical for Sem V and 2 major and project presentation for Sem VI,
- Viva would be conducted during the practical during Sem V; Sem VI would have ONLY project presentation
- Journals would be uniform throughout all the centres; matter would be communicated to all the centres by the syllabus committee.
- Distribution of marks for the experiments carried out during the examination:

Sem V (50M/ paper): Major: 20M; Minor: 10M; Viva: 10M; Journal 10M. Sem VI (50M/paper): Major (x2): 40M; Journal: 10M; Project 50M

The report could be around 25-30 pages with appropriate referencing and formatting. Marks distribution for the project would be as follows: 25M documentation, 15M presentation, 10 M viva and interactions;

- Students would undertake a project for 1-2 months during the last semester for 50 M. The project **should** include **either** of the following:
 - 1. One/ more major instrumentation OR
 - 2. One / more major technique/s required in the field of interest OR
 - 3. Bioinformatics OR
 - 4. Biostatistics

<u>Semester V</u>

Course code USBT	Title	Unit	Topics	Credit	No of Lecture s
		I: Cell cycle	Cell cycle Introduction: Prokaryotic and Eukaryotic- 3 Lectures; The Early Embryonic Cell Cycle and the Role of MPF- 4 Lectures; Yeasts and the Molecular Genetics of Cell-Cycle Control – 4 Lectures; Apoptosis, Cell-Division Controls in Multicellular Animals- 4 Lectures		15
		II: Cell Signalli ng	Cell signalling and signal transduction:Introduction General Principles of Cell Signaling - 3 Lectures ; Signaling via G-Protein-linked Cell-Surface Receptors - 3 Lectures ; Signaling via Enzyme-linked Cell-Surface Receptors - 3 Lectures ; Target-Cell Adaptation, The Logic of Intracellular - 3 Lectures ; Signaling: Lessons from Computer-based "Neural Networks"- 3 Lectures		15
501	Cell Biology	III: Develop mental Biology	Overview of how the modern era of developmental biology emerged through multidisciplinary approaches - 5 Lectures ; Stages of development- zygote, blastula, gastrula, neurula cell fate & commitment – potency- concept of embryonic stem cells, differential gene expression, terminal differentiation ,lineages of three germ layers, fate map - 6 Lectures ; Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development Pattern formation axis specification, positional identification (regional specification), Morphogenetic movements, Model organisms in Developmental biology - 4 Lectures	2.5	15
		IV: Cancer Biology	Cancer: Introduction, Cancer as a Microevolutionary Process - 4 Lectures ; The Molecular Genetics of Cancer - 6 Lectures ; Cancer and Virus Cancer diagnosis and chemotherapy - 5 Lectures		15
		Total			60

- Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA
- Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA
- The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA
- 5. Developmental Biology; Scott Gilbert; 9th Edition

Course code USBT	Title	Unit	Topics	Credit	No of Lectures
		I: Virology	Introduction to viruses-Position in biological spectrum; Virus properties - 2 Lectures ; General structure of viruses Baltimore Classification and Taxonomy(ICTV) - 2 Lectures ; Cultivation of viruses - 2 Lectures ; Reproduction of ds DNA phages Hepatitis /ss RNA (influenza), animal viruses and plant (TMV)virus - 4 Lectures ; Virus purification and assays - 2 Lectures ; Cytocidal infections and cell damage - 2 Lectures ; Viroids and Prions - 1 Lecture	2.5	15
502	Medical Microbiolog y and Instrumenta tion	II: Chemotherap eutic drugs	Discovery and Design of antimicrobial agents -1 Lecture; Classification of Antibacterial agents, Selective toxicity, MIC, MLC - 2 Lectures Inhibition of cell wall synthesis (Mode of action for): Beta lactam antibiotics: Penicillin, Cephalosporins; Glycopeptides: Wancomycin; Polypeptides: Bacitracin -2 Lectures Injury to Plasma membrane: Polymyxin – 1 Lecture; Inhibition of protein synthesis Aminoglycosides, Tetracyclines Chloramphenicol, Macrolides- Erythromycin- 2 Lectures; Inhibition of Nucleic acid synthesis: Quinolones, Rifampicin, Metronidazole - 2 lectures; Antimetabolites: Sulphonamides, Trimethoprim - 1 lecture; Drug Resistance: Mechanism, Origin and transmission of drug resistance - 1 lecture; Use and misuse of antimicrobial agents - 1 lecture; Antifungal drugs, Antiviral drugs - 2 lectures		15

III: Spectroscopy	Principle, instrumentation, working and applications of: Fluorescence Spectroscopy - 3 Lectures Luminometry - 3 Lectures Light scattering spectroscopy - 3 Lectures Infrared Spectroscopy - 3 Lectures Atomic absorption Spectroscopy - 3 Lectures	15
IV: Bio- analytical techniques	Principle, working and applications of:Affinity chromatography - 2 LecturesIon-exchange chromatography - 2LecturesMolecular (size) exclusionchromatography - 2 Lectures;HPLC - Method development andvalidation- 3 Lectures;Isotopes in Biology: Nature ofradioactivity - 1 Lecture;Detection Techniques using GMcounter, Scintillation counter,autoradiography - 4 Lectures;Applications of Tracer techniques inBiology - 1 Lecture	15
Total		60

- Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press
- 2. Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers
- Physical Biochemistry: principles and applications, 2nd edition (2009), David Sheehan, John Wiley & Sons Ltd
- HPLC method validation for pharmaceuticals: a review (2013), Harshad V.
 Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.
- 5. Mim's Medical Microbiology 5th edition
- 6. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill
- Medical Microbiology Jawetz, E., Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18th edition
- 8. Medical Microbiology by Patrick Murray 5th edition
- 9. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown
- 10. Understanding Viruses by Teri Shors

PRACTICALS

USBT P 501-502

3 credits

72hrs

- Separation of components from a mixture using Affinity chromatography (Kit may be used)
- 2. Separation of components from a mixture using ion exchange chromatography (Kit may be used)
- Separation of components from a mixture using Size exclusion chromatography (Kit may be used)
- 4. HPLC method validation.
- 5. MIC and MLC of any one antibiotic
- 6. Antibiotic sensitivity test using agar cup method
- 7. Antibiotic sensitivity test using paper disc method
- 8. Antibiotic sensitivity test using ditch method.
- 9. Cancer Biology: (Field visit and 2 page report in the journal)
- 10. Chick embryo candling and inoculation methods Demonstration experiment
- 11. Book review (Emperor of all Maladies)

Course Code USBT	Title	Unit	Topics	Credit	No of Lectu res
		I: Genetic engineerin g of plants	Genetic engineering of plants; Methodology. Plant transformation with the Ti plasmid of <i>A.tumefaciens</i> , Ti plasmid derived vector system - 4 Lectures; Transgenic plants: Physical methods of transferring genes to plants : electroporation, microprojectile bombardment, liposome mediated, protoplast fusion- 5 Lectures; Vectors for plant cells - 4 Lectures; Improvement of seed quality protein - 2 Lectures		15
		II: Transgeni c Animals	Transgenic mice- methodology-retroviral method, DNA microinjection, ES method - 5 Lectures ; genetic manipulation with cre-loxP - 2 Lectures ; Vectors for animal cells - 2 Lectures ; Transgenic animals recombination system - 2 Lectures ; Cloning live stock by nuclear transfer - 2 Lectures; Green Fluorescent Protein - 1 Lectures ; Transgenic fish – 1 Lectures		15
503 Genomics and Molecular Biology	III: Tools in Molecular Biology	Cloning vectors-Plasmids (pUC series), Cosmids, phagemids M13, shuttle vectors, YAC vectors, expression vectors pET - 4 Lectures; Gene cloning-Isolation and purification of DNA; Isolation of gene of interest: Restriction digestion, electrophoresis, blotting, cutting, and joining DNA, methods of gene transfer in prokaryotes and eukaryotes - 3 Lectures; Recombinant selection and screening methods: genetic, immunochemical, Southern and Western analysis, nucleic acid hybridization, HART,HRT- 2 Lectures; Expression of cloned DNA molecules and maximization of expression - 2 Lectures; Cloning strategies-genomic DNA libraries, cDNA libraries, chromosome walking and jumping - 4 Lectures	2.5	15	
		IV: Gene sequencin g and editing	Maxam Gilbert's method, Sanger's dideoxy method, Automated DNA sequencing, Pyrosequencing - 6 Lectures; Human genome mapping and it's implications in health and disease - 3 Lectures; RNAi, ZNF(Zinc finger nucleases), TALENS(Transcription Activator Like Effector Nucleases), CRISPER/Cas system(Clustered		15
		Total	Regularly Interspersed Repeats) - 6 Lectures		60

- 1. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.
- Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.
- 3. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.
- 4. Biotechnology 3rd Edition S.S. Purohit.
- 5. Genomes 3rd Edition T.A. Brown.
- 6. Biotechnology B.D. Singh.
- 7. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.
- 8. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)

Course Code	Title	Unit	Topics	Credit	No. of Lectures
USBT					
		I: Marine Biotech nology- Introduc tion & Biopros pecting	Introduction to Marine Biotechnology- 1 lecture; The marine ecosystem and its functioning: intertidal, estuarine, salt marsh, mangrove, coral reef, coastal &deep sea ecosystems. Hydrothermal vents- 4 lectures; Bioprospecting, Marine Microbial Habitats and Their Biotechnologically relevant Microorganisms- 2 lectures; Methods for Microbial Bioprospecting in Marine Environments - 2 lectures; Biotechnological Potential of Marine Microbes -1 lecture; Bioactive compounds from other Marine Organisms: fungi, Microalgae, Seaweeds, Actinomycetes, sponges - 5 lectures		15
504	Marine Biotech nology	II: Marine Drugs and Enzyme s	Drugs from Marine organisms: Pharmaceutical compounds from marine flora and fauna - marine toxins, antiviral and antimicrobial agents - 4 lectures; Approved Marine Drugs as Pharmaceuticals - 2 lecture; Marine Natural products and its Challenges - 2 lectures; Marine Microbial Enzymes- Marine Extremozymes and Their Significance, Current Use of Marine Microbial Enzymes - 7 lectures.	2.5	15
		III: Marine Function al foods and Nutrace uticals	Marine Functional Foods: Marine Sources as Healthy Foods or Reservoirs of Functional Ingredients -3 lectures; Marine-Derived Ingredients with Biological Properties- 3 lectures; Functional Foods Incorporating Marine-Derived Ingredients -2 lectures; Marine Nutraceuticals : Marine Bioactives as Potential Nutraceuticals, Functional Carbohydrates, Polyunsaturated Fatty Acids- 3 lectures; Carotenoids, Soluble Calcium, Fish Collagen and		15
		IV: Marine Bioreso urces and	Gelatin, Marine Probiotics -4 lectures.Marine Bioresources, Marine SecondaryMetabolites, Marine Proteins, Marine Lipids- 4lectures;Cosmetics from Marine Sources: Scenario ofMarine Sources in the Cosmetic Industry,Cosmetics: Definition and Regulations,		15

	CS	Cosmeceuticals , Target Organs and Cosmetics Delivery Systems , Components of Cosmetics, Major Functions of Some Marine Components in Cosmetics and Cosmeceuticals , Treatments Based on Marine Resources , Products Based on Marine Resources - 11 lectures.	
	Total		60

- Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.
- 2. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)
- R. S. K. Barnes, R. N. Hughes(auth.)-An Introduction to Marine Ecology, Third Edition-Wiley-Blackwell (1999)
- 4. Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)
- Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)-Marine Bioactive Compounds_ Sources, Characterization and Applications-Springer US (2012)
- 6. W. Evans-Trease and Evans Pharmacognosy 15 th ed.-Saunders (2010)

PRACTICALS

USBT P 503-504

3 credits

72hrs

- 1. Transformation in *E.coli*.
- 2. Genomic DNA Extraction: Animal cells.
- 3. Restriction enzyme digestion and ligation (Kit may be used).
- 4. Phage titration: Demonstration
- 5. Polymerase chain reaction. Demonstration
- 6. Gradient plate technique
- 7. Bacterial gene expression (Kit may be used).
- 8. Study of any 5 marine bacteria and algae (Macro and micro)
- 9. DPPH assay for antioxidant extracted from marine algae
- 10. Extraction of carotenoids from marine algae/Bacteria/Fungi
- 11. Extraction and estimation of Gelatin / Collagen.
- 12. Extraction of alkaloids from marine organisms and their separation by TLC.

Applied component Biosafety Introduction - 1 lecture Introduction - 1 lecture Biosafety Introduction - 1 lecture; Biological Risk Assessment, Assessment, Hazardous Characteristics of a Agent - 2 lectures; Genetically modified agent hazards - 1 Interver; Cell cultures - 1 lecture; Hazardous Characteristics of Laboratory Procedures - 1 Interver; Potential Hazards Associated with Work Practices - 2 lectures; Safety Equipment and Facility Safeguards - 2 lectures; Calibration of Laboratory work - 1 lecture; Cell cultures: Collectures; Documentation of Laboratory work - 1 lecture; Collectures; Calibration records - 1 lectures; Documentation of results - 1 12 II: GLP Concept of GLP- 1 lectures; Documentation of results - 1 2.0 III: GLP Concept of Concept of results - 1 2.0 III: GLP Concept of results - 3 2.0 III:	Course	Title	Unit	Topics	Credits	Lectures
Applied componentBiosafetylecture; lecturesPotential Hazards Associated with Work Practices – 2 lectures; Safety Equipment and Facility Safeguards - 2 lectures; Pathogenic risk and management - 2 lectures1II: GLPConcept of GLP- 1 lectures; Practicing GLP- 1 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture.12III:Microbial Contamination in food and some common microbial contamination ants pharmaceutical products - 4 lectures; Nicrobiological Assays for marmaceutical products - 4 lectures; Regulating fDNA technology -2 lectures; Genetically engineered crops, livestock Bioethics -3 lectures; Genetically engineered crops, livestock Bioethics -3 lectures; Contemporary issues in Bioethics12			Introducti on to	Biological Risk Assessment, Hazardous Characteristics of an Agent- 2 lectures; Genetically modified agent hazards - 1 lecture; Cell cultures - 1 lecture;		15
Applied componentBiosafetyPracticing Guidelines to GLP - 1 lecture; Guidelines to GLP - 2 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture, Audits & Audit reports - 1 lecture.12III: Detection and testing of contamin 				lecture; Potential Hazards Associated with Work Practices – 2 lectures; Safety Equipment and Facility Safeguards - 2 lectures; Pathogenic risk and management - 2 lectures		
III:Microbial Contamination in food and pharma product - 3 lectures; Some common microbial testing of contamin1212121212121212121314151516171718191910101011111212131415151617171819191911111111121213141516171718191919111111111112131414151516171717181919191919191919191919111111111111111111111111111111 <td rowspan="3"></td> <td>Biosafety</td> <td>II: GLP</td> <td>Practicing GLP- 1 lecture; Guidelines to GLP - 2 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture; Audits & Audit reports -</td> <td>2.0</td> <td>12</td>		Biosafety	II: GLP	Practicing GLP- 1 lecture; Guidelines to GLP - 2 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture; Audits & Audit reports -	2.0	12
Biosafety inBiotechnology - 2 lectures; Regulating rDNA technology -2Biotechn ologylectures; Regulating food and food ingredients -3 lectures; Genetically engineered crops, livestock Bioethics -3 lectures; Contemporary issues in Bioethics			Detection and testing of contamin	Microbial Contamination in food and pharma product - 3 lectures ; Some common microbial contaminants - 3 lectures ; Microbiological Assays for pharmaceutical products - 4 lectures ; Regulatory Microbiological testing in		12
– Z IECHIFEN.			Biosafety in Biotechn	Biotechnology - 2 lectures; Regulating rDNA technology -2 lectures; Regulating food and food ingredients -3 lectures; Genetically engineered crops, livestock Bioethics -3 lectures;		12

- Pharmaceutical Microbiology Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.
- Biosafety in Microbiological and Biomedical Laboratories 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.
- Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

PRACTICALS

Applied Component- Biosafety 2 Credits

48hours

- 1. Validation of micropipette, measuring cylinders, colorimeters
- 2. Calibration of pH meter and weighing balance
- 3. Vitamin B12 bioassay
- 4. Testing for adulterants in food; ex. Starch in milk
- 5. Making SOP for any 2 major laboratory instruments
- 6. Sterility of injectables

Semester VI

USBT Protein structure: Protein Tertiary and Quaternary Structures -2 Lectures; Protein Function and Folding – 3 Lectures; Protein Function: Reversible Binding of a Protein Function: Reversible Binding of a Protein Function: Reversible Binding of a Protein s a Ligand: Oxygen-Binding Proteins -2 Lectures; Complementary Interactions between Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors -3 Lectures; Protein purification - 4 Lectures; Starch and sucrose in Plants -4 Lectures; Biosynthesis and regulation of Cholesterol, Atheroselerosis - 5 Lectures. 15 601 Biochemistry Mechanism of action of group I and II hormones - 1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Posterior Pituitary gland – oxeytocin and vasopressin -1 Lecture; Parathyroid gland – PTH -1 Lecture; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Panereas – insulin and glucagon - 2 Lectures; Meala Gonads – estrogen and progesterone -2 Lectures; Mala cored, - attenter, - 1 Lecture; 15	Course Code	Title	Unit	Topics	Credits	Lectu res
601BiochemistryCarbohydrate biosynthesis and its regulation: Peptidoglycan in Bacteria -2 Lectures; Starch and sucrose in Plants -4 Lectures; Glycogen in Animals - 4 Lectures; Biosynthesis and regulation of Cholesterol, Atherosclerosis - 5 Lectures.15601BiochemistryMechanism of action of group I and II hormones-1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Posterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Thyroid gland - Thyroxine, calcitonin - 2 Lectures; Parathyroid gland - PTH -1 Lecture; Adrenal medulla - epinephrine and norepinephrine -1 Lecture; Paracreas - insulin and glucagon - 2 Lectures; Female Gonads - estrogen and progesterone - 2 Lectures;15	USBT		Protein	Quaternary Structures -2 Lectures; Protein Denaturation and Folding – 3 Lectures; Protein Function: Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins – 2 Lectures; Complementary Interactions between Proteins and Ligands: Immunoglobulins – 1 Lecture; Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors -3 Lectures;		15
601 Biochemistry Mechanism of action of group I and II hormones- 1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Anterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Posterior Pituitary gland – oxcytocin and vasopressin -1 Lecture; Thyroid gland – Thyroxine, calcitonin - 2 Lectures; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Adrenal cortex – Glucocortocoids - 1 Lecture; Pancreas – insulin and glucagon - 2 Lectures; Female Gonads – estrogen and progesterone - 2 Lectures; 15			-	Carbohydrate biosynthesis and its regulation: Peptidoglycan in Bacteria -2 Lectures; Starch and sucrose in Plants -4 Lectures; Glycogen in Animals - 4 Lectures; Biosynthesis and regulation of Cholesterol,		15
Placenta – hCG - 1 Lecture.	601	Biochemistry		hormones- 1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Anterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Posterior Pituitary gland – oxcytocin and vasopressin -1 Lecture; Thyroid gland – Thyroxine, calcitonin - 2 Lectures; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Adrenal cortex – Glucocortocoids - 1 Lectures; Pancreas – insulin and glucagon - 2 Lectures; Female Gonads – estrogen and progesterone - 2 Lectures; Male gonads – testosterone- 1 Lecture;	2.5	15

Nutrition	Dietary sources, bioactive form, functions and disorders associated with fat soluble (A D E K) and water soluble vitamins- 7 Lectures; Minerals - physiological and biochemical functions of principal and trace elements 7 Lectures; Malnutrition – Over nutrition (obesity) and PEM (Kwashiorkor and Marasmus)- 1 Lecture.	15
Total		60

- Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael Cox *W.H. Freeman* and Company, New York.
- 2. Biochemistry , 4th edition (2010), Voet and Voet, John Wiley and sons, USA
- 3. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.
- Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd
- 5. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers.

Course Code	Title	Unit	Topics	Credit	No. of Lectures
USBT		I: Dairy technology	Milk: Normal flora, changes in raw milk - 2 lectures; Enumeration - 1 lecture; Factors affecting bacteriological quality - 1 lecture; Dairy technology Preservation methods - 2 lectures; Pasteurization- 1 lecture; Starter Cultures - 2 lectures; Fermented products-Production process and spoilage of Cheese: Swiss and Cheddar - 2 lectures; Butter - 2 lectures; Yogurt - 1 lectures and Buttermilk - 1 lecture.		15
602	Industrial Microbiology	II: Down-stream Processing (DSP)	Introduction of DSP - 2 lectures; Foam separation - 1 lecture; Types of Precipitation - 1 lecture; Filtration 2 lectures, Centrifugation - 1 lecture; Chromatography in DSP - 2 lectures; Cell disruption- physical and chemical methods - 2 lectures; Solvent recovery, Membrane processes - 1 lecture; Drying - 1 lecture; Crystallization and Whole broth processing - 2 lectures.	2.5	15
		III: Fermentation process	Introduction to Inoculum development - 2 lectures; Bacterial and fungal inoculum development with one example each - 3 lectures, scale up, scale down - 2 lectures; Production of: Streptomycin - 1 lecture; Protease - 1 lecture; Mushroom - 1 lecture; Glutamic acid - 1 lecture; Lysine - 1 lecture, ethanol production 1 lecture Semi-synthetic Penicillin 1 lecture, Biotransformation - 1 lecture.		15
		IV: QA-QC	Concept of GMP- 1 Lectures; Requirements of GMP implementation - 2 Lectures; Documentation of GMP practices - 2 Lectures; Regulatory certification of GMP - 2 Lectures; Quality Control (QC): Concept of QC - 2 Lectures; Requirements for implementing QC -		15

		2 Lectures; QA concepts: Concept of	
		QA - 2 Lectures; Requirements for	
		implementing - 2 Lectures.	
	Total		60

- Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition
- 2. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals
- 3. Industrial Microbiology Prescott and Dunn CBS publishers
- 4. Dairy technology by Yadav and Grower
- 5. Fermentation technology by Stanbury and Whittkar
- 6. Pharmaceutical Microbiology by Russel and Hugo

PRACTICALS

USBT P 601-602

3 credits

72hrs

- 1. Estimation of Milk protein-Pynes method
- 2. Microbial analysis of Milk by MBRT and RRT
- 3. Phosphatase test in Milk
- 4. DMC of milk sample
- 5. Isolation of Normal flora from Milk and curd
- 6. Determination of blood glucose levels for detection of diabetes mellitus.
- 7. Determination of serum cholesterol (total, HDL and LDL ratio)
- 8. Estimation vitamin C by DCPIP method from food samples.

Course Code USBT	Title	Unit	Topics	Credits	No of Lectures
		I: General principles of Pharmacolo gy	Mechanism of drug action - 2 Lectures; drug receptors and biological responses - 2 Lectures; second-messenger systems, the chemistry of drug-receptor binding - 2 Lectures; dose-response relationship: therapeutic index - 3 Lectures; ED, LD, - 2 Lectures; Potency and Intrinsic Activity - 2 Lectures; Drug antagonism - 2 Lectures.		15
603	Basic phar	Absorption of drugs from the alimentary - 2 Lectures; factors affecting rate of gastrointestinal absorption - 2 Lectures absorption of drugs from lungs - 1 Lect skin - 1 Lecture; absorption of drugs a parenteral administration factors influencing drug distribution - 2 Lectures; binding of drugs to plasma proteins - 2 Lectures; BasicBasic	Absorption of drugs from the alimentary tract - 2 Lectures; factors affecting rate of gastrointestinal absorption - 2 Lectures; absorption of drugs from lungs - 1 Lecture; skin - 1 Lecture; absorption of drugs after parenteral administration factors influencing drug distribution - 2 Lectures; binding of drugs to plasma proteins - 2		15
	macol ogy and Neuro chemi stry	III: Basic Toxicology and Regulatory Toxicology	Background Definitions - 1 Lectures; Causation: degrees of certainty Classification - 1 Lectures; Causes Allergy in response to drugs Effects of prolonged administration: chronic organ toxicity - 2 Lectures; Adverse effects on reproduction - 1 Lecture; <u>Poisons</u> : Deliberate and accidental self-poisoning Principles of treatment Poison-specific measures General measures - 2 Lectures; Specific poisonings: cyanide, methanol, ethylene glycol, hydrocarbons, volatile solvents, heavy metals, - 3 Lectures; herbicides and pesticides, - 2 Lectures; biological substances (overdose of medicinal drugs is dealt with under individual agents) - 1 Lecture; Incapacitating agents: drugs used for torture - 1 Lecture; Nonmedical use of drugs - 1 Lecture.	2.5	15
		IV: Neurochemi stry	Anatomy and functioning of the brain - 2 Lectures; Neuronal pathways - 2 Lectures;		15

		Propogation of nerve impulses - 2 Lectures; Neuronal excitation and inhibition - 3 Lectures; Synapses and gap junctions - 3 Lectures; Action of Neuro toxins and neurotransmitters - 3 Lectures.	
	Total		60

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R.E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier

Course Code USBT	Title	Unit	Topics	Credits	No of Lecture s
604	Environ mental Biotechn ology	I: Renewab le sources of energy	Energy sources renewable – solar energy, wind power, geothermal energy and hydropower, biomass energy - 5 Lectures ; Biogas technology- biogas plant & types, biodigester. Biogas- composition, production and factors affecting production, uses - 5 Lectures ; Biofuels – ethanol production. Microbial hydrogen production Biodiesel, Petrocrops - 5 Lectures ;	2.5	15
		II Industrial effluent treatment	Biological processes for industrial effluent treatment, aerobic biological treatment- activated sludge process, CASP, advanced activated sludge processes (any two) Biological filters, RBC, FBR - 5 Lectures; Anaerobic biological treatment- contact digesters, packed bed reactors, anaerobic baffled digesters, UASB - 3 Lectures; Solid waste treatment - 2 Lectures; pollution indicators & biosensors - 2 Lectures; biodegradation of xenobiotics- persistent compounds, chemical properties influencing biodegradability, microorganisms in biodegradation - 2 Lectures; Use of immobilized enzymes or microbial cells for treatment - 1 Lecture.		15
		III Wastewat er treatment	Wastewater treatment- introduction, biological treatment, impact of pollutants on biotreatment, use of packaged organisms and genetically engineered organisms in waste treatment - 5 Lectures; Heavy metal pollution – sources, microbial systems for heavy metal accumulation, techniques used for heavy metal removal - 5 Lectures; biosorption by bacteria, fungi and algae, factors affecting biosorption limitations of biosorption - 5 Lectures.		15
		IV Hazardou s waste managem ent	Biodegradation of waste from tanning industry - 2 Lectures; petroleum industry - 2 Lectures; paper & pulp industry - 2 Lectures; Dairy - 2 Lectures; Distillery - 2 Lectures; Dye - 1 Lecture; Antibiotic industry - 2 Lectures; Removal of oil spillage & grease deposits - 2 Lectures.		15
		Total			60

- 1. Environmental Biotechnology Allan Scragg Oxford University press
- 2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International
- 3. Environmental Biotechnology (Industrial pollution management) S.D. Jogdand Himalaya Publishing House

PRACTICALS

USBT P 603-604

3 credits

72hrs

- 1. LD 50, ED 50 evaluation using suitable models e.x daphnia
- 2. Study the effect of heavy metals on the growth of bacteria.
- 3. Determination of Total Solids from an effluent sample.
- 4. Study of physico-chemical (pH, color, turbidity, BOD, COD) parameters of any one industrial effluent sample
- 5. Estimation of chromium from Effluents (Demonstration)
- 6. Visit to ETP/ CETP

Course	Title	Unit	Topics	Credit	No. of Lectures
Applied component	Agri Biotechnology	I: Precision Agriculture and Agriculture systems	Introduction to Agriculture and Agriculture systems- 1 Lecture ; Green house Technology Types of green house, importance, functions and features of green house, Design criteria and calculation - 2 Lectures ; Construction material, covering material and its characteristics, growing media, green house irrigation system. nutrient management - 3 Lectures ; Greenhouse heating, cooling and shedding and ventilation system, Computer controlled environment - 3 Lectures ;, Phytotrons, fertigation and roof system - 1 Lecture ; Precision Cultivation- tools, sensors for information acquisition - 2 Lectures .	2	12
		II: Plant stress biology	Abiotic stress –Physiological and molecular responses of plants to water stress, salinity stress, temperature stress – heat and cold, Photooxidative stress, stress perception and stress signaling pathways, Ionic and osmotic homeostasis, reactive oxygen species scavenging- 4 Lectures; Biotic stress - plant interaction with bacterial, viral and fungal pathogens, plant responses to pathogen– biochemical and molecular basis of host-plant resistance , toxins of fungi and bacteria , systemic and induced resistance –pathogen derived resistance, signalling - 8 Lectures.		12
		III: Molecular Markers in Plant Breeding	Genetic markers in plant breeding Classical markers, DNA markers (RFLP, RAPD, AFLP, SSR, SNP)- 4 Lectures; Application of Molecular Markers to Plant Breeding [quantitative trait locus (QTL) mapping] - 4 Lectures; Plant DNA Barcoding- Barcoding Markers (matK, rbcl, ITS, tmH- psbA), steps, recent advances, Benefits, Limitations - 4 Lectures.		12

Image: Microorganisms-Phosphate-Solubilizing Microbes (Phytohormones and Cytoh Induced Systemic Resistand Lectures;IV:IV:Plant Growth Promotion by F Biofertilizers and BiopesticidesBiopesticidesMicrobial Inoculants Im Carriers, and Applic Monoculture and Co-co Inoculant Formulations Bioce	trogen noting PSM), kinins, ce- 2 Fungi rrhizae nocula, ations, culture ontrol, oculant acillus
---	---

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- 2. P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation-Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013
- Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)
- Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides_ Methods and Protocols (2016, Humana Press)
- 6. Altieri, Miguel A.Farrell, John G-Agroecology- The Science Of Sustainable Agriculture, Second Edition-CRC Press (2018)
- Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_Prospects for the 21st Century-Academic Press (2011)

PRACTICALS

Applied component-Agri-Biotechnology

USBT P 603-604

2 credits

48 hrs

- 1. RAPD analysis demonstration experiment
- 2. Isolation of Rhizobium
- 3. Isolation of Azotobacter
- 4. Isolation of Phosphate solubilising bacteria
- 5. Study of effect of abiotic stress on plants.
- 6. Rapid screening tests for abiotic stress tolerance (drought, PEG, Mannitol &salinity NaCl)
- 7. Estimation of antioxidants and antioxidant enzymes Ascorbate, Catalase, and Peroxidase
- 8. Visit to green house facility and submission of field visit report.